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Abstract – We present three strategies designed to accelerate 

the convergence during the search process of evolutionary 

algorithms for convex integer optimization problems. The 

strategies realize a systematic diversification of the search. They 

are compared with performance of scatter search and particle 

swarm optimization.  
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I. INTRODUCTION 

We consider the convex integer programming problem in 

the form:  

       Min  F(x)               (1) 

subject to:   g
i
(x) ≤≤≤≤ 0;    i = 1,…,m;           (2) 

       l
j
 ≤≤≤≤ x

j
 ≤≤≤≤ u

j
;    j = 1,…,n;           (3) 

       x ∈∈∈∈ Z
n

,            (4) 
where x is an n-dimensional vector of integer variables xj, j = 

1,…,n. By lj and uj are denoted the bounds (lower and upper) 

of xj, and F(x) is the multimodal objective function. F(x) may 

not possess derivatives in an explicit analytical form. The 

functions gi(x), i = 1,…,m; are convex nonlinear functions and 

m is the number of nonlinear constraints (2).  

The convex integer problems (see [6, 18]) belong to the 

class of NP-hard optimization problems. There does not exist 

an exact algorithm, which can solve these problems in time, 

depending polynomially on the problem input data length or 

on the problem size. For this reason many efficient 

approximate evolutionary algorithms and metaheuristic 

methods have been created to find out the global optimum of 

such complex optimization problems (see [8,11,14,17,19,21]). 

To solve problem (1-4) many algorithms which mimic the 

natural evolution process of species have been designed in 

order to obtain a global optimum. They could be classified as 

“evolutionary” or “population based” algorithms (see [14]). 

The most familiar and powerful among them are Genetic 

Algorithms (GA) (see [11, 15]), Scatter Search (SS) (see [7, 

9]), Tabu Search (TS) (see [8, 9, 10]), Ant Systems (AS) (see 

[1, 2, 3]) and Particle Swarm Optimization (PSO) (see [5, 16, 

17]). The evolutionary algorithms use a population of feasible 

solutions (or characteristics of solutions), called individuals, 

trial (dispersed) points, ants, particles etc. In this paper is 

used the term individuals.   

The evolutionary algorithms usually use an improvement 

sub-procedure to intensify the search process in some regions 

of the search space. One such sub-procedure is the local 

search. It is supposed that each intensification period finishes 

with a found local optimum. To escape from the local 

optimality a diversification of the search process is necessary 

after the intensification period.  

To be efficient an evolutionary algorithm for search a 

global optimal solution it should quickly perform the 

diversification of the search. Different ways for diversification 

of the search have been developed. For example, during the 

diversification phase the individuals could be modified 

independently – like the mutation in GA. But the results are 

unexpected in the sense that the modification does not lead 

necessarily to an improvement. A famous example for 

diversification is the Tabu list strategy used in the Tabu search 

algorithms. Some characteristics of solutions or movements 

(steps in given directions) are stored as forbidden (tabu) for 

certain number of iterations. In this manner the cycling and 

the trap of local optimality are avoided. Successful 

diversification of the search process is the use of non-convex 

combinations of parent solution vectors. In this way 

individuals that lie in new regions are systematically 

generated (see [7, 9]).  

To achieve good convergence speed the successful global 

search methods combine usually two or more metaheuristics 

in hybrid methods. For example GA are combined with Tabu 

Search methods, or with a faster local search procedure, AS – 

with local search techniques  (see [21]), GA – with clustering 

procedure (see[4]), SS – with TS or SS – with GA (see [9]). 

Tabu search can also be coupled with directional search 

approach. Another important way to accelerate the 

performance of an evolutionary algorithm is to use the 

features of the best individuals obtained during the search 

process and the historically good information they have 

accumulated. This is an elitism – based approach for 

generating new offspring individuals (see for example [13]). 

A possible strategy is to combine the qualities of a directional 

type method with the good features of evolutionary 

algorithms. The directional type steps may accelerate the 

convergence in regular regions of the search space, while the 

evolutionary algorithms are able to escape the trap of local 

optima, exploring the whole feasible domain. Accelerating the 

systematic diversification is an open area for further 

development of search strategies.  

In this paper three strategies for fast systematic 

diversification of the search process are proposed. The 

proposed accelerating strategies are described in Section II. 

An illustrative example is given in Section III. Some 

conclusions are drawn in Section IV.  

II. THE HEURISTIC ACCELERATING STRATEGIES 

Considering the search process for global optimum there is  
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no reason the search to be directed to the region of the best 

found so far (local optimal or near optimal) solution, because 

in the most cases it will not coincide with the global optimal 

solution. The same is valid for all known local optimal 

solutions, as well for all explored regions of the feasible 

domain. The exploration of the whole feasible domain means 

that there is a guaranteed systematic diversification of the 

search process. A hybrid method performing systematically 

diversified search (SDS-method) by means of separating the 

feasible domain in sub-regions (cones having a common 

vertex) is proposed in [12]. The systematic diversification of 

the search consists in exploring the cones obtained one by 

one.  

Let the feasible domain be denoted by X and let the 

Tchebicheff center (the point located at the maximal 

Euclidean distance from the constraint surfaces) be xtch ∈ X. 

We assume that xtch is obtained by means of a method for 

solving convex problems with continuous variables. Then xtch 

is rounded off to the nearest integer point itch. 

A. Wave-spreading strategy 

Step 1. Generate a regular simplex with n+1 vertices, 

using itch as one vertex. The other simplex vertices are 

generated in the following manner: 

               itch j + ϕ1  if j≠i 

  v
(i)

j =           i = 1,…,n; j = 1,…,n; (5) 

               itch j + ϕ2 if j=i 

 

  ϕ1  =  α.[ 
2

1)1(

n

nn −++

 ]   (6) 

  ϕ2  =  α.[ 
2

1)1(

n

n −+

 ]   (7) 

Let itch be denoted as v
(0)

. Round off each v
(j)

, j = 1,…,n; to 

its nearest integer point. There are (n+1) combinations of n 

vertices, correspondingly for each facet of the simplex.  

Step 2. Calculate the components of the simplex weight 

center as follows:  

   csi =  
1

0

)(

+

∑
=

n

n

j

j

iv

,  i=1,…,n  (8) 

Round off each component csi to its nearest integer value.  

Step 3. Create an initial population P0 around the weight 

center cs, containing p uniform distributed solution vectors, 

generated by using deviation of ±δ, where δ is a constant % of 

corresponding component (for example δmax = ±1%).  

Step 4. Intensification phase 

Here is used a reflection like the idea in the simplex 

method by Nelder and Mead (see [20]). 

a) Order the individuals (solutions) in the current 
population in increasing order of their F-values. 

b) Calculate the weight center Pc of first k individuals: 

Pc = ∑
=

k

j

j
x

k
1

)(1
   (9) 

Here k is chosen to cover about 10% to 50% of the 

individuals in the population. 

c) Let xw1 ,…, xwk be the individuals in the current 

population having the worst (i.e. the greatest) F-values. 

Calculate the steps: 

yi = Pc – xwi , i = 1,…,k;   (10) 

d) Reflect the k worst individuals towards Pc to 

generate k new individuals (solutions): 

xnewi = Pc + yi, i = 1,…,k.     (11) 

Round off each xnewi is rounded off to its near integer 

point. In case someone new solution is infeasible, i.e. the 

constraints (2)-(3) are violated, restrict the step length:  

y  = θ. y,    (12)  

where θ ∈(0,1).  
e) In case someone of the so generated individuals is 

better than one of the current population, the better individual 

replaces the worse. If there aren’t generated better individuals 

continue by Step 5, otherwise go to a).  

Step 5. Diversification phase 

a) Make step β(v
(j)

 – cs) along each ray starting at cs 

and passing through the simplex vertices v
(j)

, j = 0,…,n; in 

outside direction, so that the new central solutions cs
(j), j = 

0,…,n; are generated.  

b) Around each point cs
(j)

 are generated p uniform 

distributed solutions’ vectors like in Step 3 and build (n+1) 

new populations Pj.  

c) Perform the Intensification phase for each new 

population Pj , j = 0,…,n;.  

d) Make step β(cs – v
(j)

) along each ray starting at cs in 

the opposite of sub-step a) direction, so that the new points 

cs
(j), j = 0,…,n; are generated. Perform the sub-steps b) and c). 

Step 6. Alternate the Diversification and the 

Intensification phase in the same way until reaching the 

boundaries of the feasible region. 

Step 7. Perform simple local search around each found 

locally optimal solution to precisely locate all found optima.  

REMARKS:  

The initial simplex gets larger and larger in the search 

space like a wave raised by a stone in a lake. 

The parameter β depends on the size of feasible region. 

For relative small domains the greatest component of β(v
(j)

 – 

cs) is 10% of the greatest among the values Qj = uj – lj, for j = 

1,…,n; For larger domains β should be chosen smaller. 

For large feasible domains also the rays passing through cs 

and through each of the (n+1) weight centers of simplex 

vertices determining each simplex facet should be explored in 

the way described above.   

B. Slicing strategy 

In this strategy the feasible domain will be separated 

(sliced) in t sub-regions as follows:  

Step 1. Compare the values Qj = uj – lj, for j = 1,…,n; and 

find out the maximal value Qj
(max) for fixed j = jmax. Let q be 

the integer part of  Qj
(max)

/t: 

  q = 
t

max
jQ

    (13) 
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and let lj
1 = lj, uj

1 = lj
1+q–1, lj

i = uj
i-1+1; uj

i = uj
i-1+q–1; for 

i=2,…,t–1, and lj
t
 = uj

t-1
+1; uj

t
 = uj, where j = jmax.  

Step 2. Divide the constraint system (3) into t constraint 

sub-systems: 

           l
j
 ≤≤≤≤ x

j
 ≤≤≤≤ u

j
;    j = 1,…,n; j ≠≠≠≠ jmax;    

   l
j

i

 ≤≤≤≤ x
j

i

 ≤≤≤≤ u
j

i

;    j = jmax; i = 1,…,t.  (14) 
Each sub-region is defined by the constraint systems (2), (4) 

and by one constraint sub-system from (14). 

Step 3. Perform diversification of the search process by 

going from one sub-region to another, generating the initial 

population at random with uniform distribution around the 

Tchebicheff center of the current sub-region. Then perform 

the Intensification phase described in Wave – spreading 

strategy (Step 4.) in each sub-region.  

C. Hybrid strategy 

This strategy consists in slicing the feasible domain in the 

way described in Slicing strategy. After that the search 

procedure performs a Wave – spreading strategy in each sub-

region.  

III. ILLUSTRATIVE EXAMPLE  

Let us consider the following two-dimensional example.  

Five sub-areas in the feasible domain are defined: 

A1 = {0 ≤ x1, 0 ≤ x2, 21x1 + 20x2 – 84000 ≤ 0} 

A2 = {0 ≤ x1, x2 ≤ 10000, 0 < 21x1 + 20x2 – 84000,  

             7x1 – 5x2 + 15000 ≤ 0} 

A3 = {x1 ≤ 7200, 0 ≤ x2, x2 ≤ 10000,  

           0 < 21x1 + 20x2 – 84000, 0 < 7x1 – 5x2 + 15000} 

A4 = {7200 < x1, x1 ≤ 10000, x2 ≤ 5900, 0 ≤ x2} 

A5 = {7200 < x1, x1 ≤ 10000, 5900 < x2, x2 ≤ 10000} 

 The optimization problem is: 

Min F(x) = 10 + (x1 – 2500)
2
 + (x2 – 1000)

2
 if  (x1, x2)∈ A1; 

                    7 + (x1 – 1500)
2
 + (x2 – 7000)

2
  if  (x1, x2)∈ A2; 

                   12 + (x1 – 6100)
2
 + (x2 – 3400)

2
 if  (x1, x2)∈ A3; 

          11 + (x1 – 9800)
2
 + (x2 – 2100)

2
 if  (x1, x2)∈ A4; 

           3 + (x1 – 8100)
2
 + (x2 – 9700)

2
 if  (x1, x2)∈ A5; 

   subject to:  0 ≤ x1 ≤ 10000; 

   0 ≤ x2 ≤ 10000; 

This problem has five local optima – one per each sub-area:  

 x
(1*)

= (2500, 1000), x
(2*)

= (1500, 7000), x
(3*)

= (6100, 3400),  

 x
(4*)

= (9800, 2100), x
(5*)

= (8100, 9700);  

The corresponding objective function values are:  

F(x
(1*)

)=10; F(x
(2*)

) = 7; F(x
(3*)

) = 12; F(x
(4*)

) = 11;  

F(x
(5*)

) = 3. Hence the global optimal solution is x
(5*)

. 

Wave-spreading strategy 

Starting at the Tchebicheff center itch = (5000, 5000) the 

simplex with vertices (5000, 5000), (5002.588, 5009.659) and 

(5009.659, 5002.588) is generated. The weight center of the 

simplex is  cs = (5004, 5004). 

The population P(0) includes 10 points (individuals): 

 x
(1)

 = (4994, 4994), x
(2)

 = (5004, 4994), x
(3)

 = (5014, 4994),  

 x
(4)

 = (4985, 5004), x
(5)

 = (4005, 5004), x
(6)

 = (5005, 5004),  

x
(7)

 = (5015, 5004), x
(8)

 = (4994, 5014), x
(9)

 = (5004, 5014),  

x
(10) = (5014, 5014);.  

The corresponding objective function values are:  

F(x
(1)

) = 3764084, F(x
(2)

) = 3742064, F(x
(3)

) = 3720244, 

F(x
(4)

) = 3816053, F(x
(5)

) = 3793853, F(x
(6)

) = 3771853, 

F(x
(7)

) = 3750053, F(x
(8)

) = 3828244, F(x
(9)

) = 3806224, 

F(x(10)) = 3784404;. 

For k = 10% we choose the best individual: x(3). The worst 

individuals are x
(8)

, x
(4)

 and x
(9)

. The worst individuals are 

reflected towards x
(3)

. Three new better individuals are 

generated and they replace the worst individuals x(8), x(4) and 

x
(9). Proceeding in this way until no better individuals are 

generated, and then performing a simple local search, the 

procedure finds out the locally optimal solution x
(3*) 

= (6100, 

3400) with objective function value F(x(3*)) = 12. 

The generated simplex has the following rounded off 

vertices: v
(0) 

= (5000, 5000), v
(1) 

= (5003, 5010) and v
(2) 

= 

(5010, 5003). We will consider the performance of this 

strategy along one exploring ray, say (v(0
 – cs) = (–4, –4). 

Proceeding with β = 250 at v
(0)

  the search procedure creates 

consecutively 5 initial populations around the calculated 

central solutions cs
(1)

 = (4000, 4000), cs
(2)

 = (3000, 3000), cs
(3)

 

= (2000, 2000), cs
(4)

 = (1000, 1000), cs
(5)

 = (0, 0). The last 

population reaches the boundaries of the feasible domain, so 

that this direction is explored. The third generated population 

around cs
(3)

 = (2000, 2000) comes in the sub-area A1, so that 

the intensification phase finds out the optimum F(x
(1*)

). The 

same is repeated with the fourth and fifth generated 

population.  

Then the procedure explores the opposite direction, creating 

again five initial populations around the calculated central 

solutions cs
(6)

 = (6000, 6000), cs
(7)

 = (7000, 7000), cs
(8)

 = 

(8000, 8000), cs
(9) = (9000, 9000), cs

(10) = (10000, 10000). 

The last three populations come in the sub-area A5, so that the 

intensification phase finds out the optimum F(x
(5*)

). 

Going on along the other two exploring rays in both 

possible directions the search procedure finds out also the 

optima F(x
(4*)

) and F(x
(2*)

). 

During the exploration of whole feasible domain 31 

intensification phases are performed.   

Slicing strategy 

We choose the component x1 as slicing component. The 

created sub-areas are: B1:  0 ≤≤≤≤ x1 < 1000; 0 ≤≤≤≤ x2 < 10000; 

B2: 1000 ≤≤≤≤ x1 < 2000;   0 ≤≤≤≤ x2 < 10000;  … 

B10: 9000 ≤≤≤≤ x1 ≤≤≤≤ 10000; 0 ≤≤≤≤ x2 < 10000; 

In each sub-area is generated an initial population randomly 

with uniform distribution. Performing the above described 

intensification phase in each sub-area the search procedure 

finds out all locally optimal solutions. To explore the whole 

feasible domain 10 intensification phases are performed. 

Some of them are more time-consuming than the 

intensification phases performed by Wave-spreading strategy. 

Hybrid strategy 

This strategy also finds out all possible local optima. Here 

the value of parameter β remains the same like in the Wave-

spreading strategy, because the component x2 keeps its 

variation interval unchanged. This leads to great steps along 

the exploring rays and in some directions already the first 

generated initial population is infeasible. For this reason β 

should be reduced in half and this is repeated until the 

generating a feasible population becomes possible.  
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Comparisons with other algorithms 

The described strategies are compared with scatter search 

and with particle swarm optimization. Starting with the initial 

population P
(0)

 these two algorithms are able to find out only 

one locally optimal solution, and this is x
(3*). Better 

performance is achieved in case the initial population is 

enough dispersed. The scatter search has better chances to 

find out the global optimal solution in case the limit of 

iterations is large. In this case it needs more than 1000 

generations. 

The presented problem may be solved by genetic algorithm, 

using niches. In this way all optima can be found but this 

performance will be essentially more time consuming than the 

proposed solution procedures. 

IV. CONCLUSIONS 

The presented strategies for fast systematic diversification 

of the search have the following advantages: 

• They systematically diversify the search process, 

avoiding in this manner the trap of local minima. 

• They explore roughly the whole feasible domain and 

have good chances to find out the global optimal 

solution. 

• The applying of local search technique at the end of the 

search process guarantees the good quality of the 

obtained solution. 

• The proposed strategies have a better convergence to the 

global optimum in comparison to other global search 

algorithms, in which the search process does not perform 

a systematic diversification. 

• They are simpler and don’t require large computer 

memory and complex memory organization in 

comparison to other global search strategies like Tabu 

search. 

• They use populations with relatively small size. This 

makes them efficient in solving large dimensional 

problems. 

• The proposed strategies are easy for computer 

programming implementation. 
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