
Efficient Implementation of
BDD Packages on the GPU Platform

Miloš M. Radmanović1 and Dušan B. Gajić2

Abstract – Efficient construction and manipulation of Binary
Decision Diagrams (BDDs) is an important component of
Computer Aided Design (CAD) tasks. One solution to improve the
performance of BDD packages is to perform some of the BDD
operations in parallel using the Graphics Processing Unit (GPU).
The recent evolution of GPU frameworks for programming general
purpose computations, such as the OpenCL and Nvidia CUDA, has
offered GPUs as a powerful and attractive choice for developing
high-performance numerical applications. In this work, we propose
an efficient implementation of a BDD package which distributes
computations over central processing units (CPUs) and GPUs. The
proposed implementation exploits various sources of parallelism
that can be found in BDD packages. The experimental results
confirm that the application of the proposed solution leads to
significant computational speedups in BDD packages.

Keywords – Binary decision diagrams, BDD package, parallel
implementation, graphics processing unit, GPU computing.

I. INTRODUCTION

Binary Decision Diagrams (BDDs) are the dominant data
structure for representing Boolean functions in CAD
applications. The application of BDDs is further extended
with their use in various areas of computer science and
engineering. In practice, the success of BDD representations
depends on the abillity to efficiently manipulate large BDDs.
Therefore, considerable research has been conducted in order
to develop more efficient implementations of BDD algorithms
[1-5].

BDD algorithms are usually built on top of BDD packages.
Many BDD package implementations have been developed in
a variety of programming languages and most of them are
freely available as public domain on the Internet. The choice
of a BDD package for a certain application is typically guided
by the following package characteristics: functionality,
software interface, robustness, reliability, portability, support,
and performance. In most cases, the performance of a BDD
package is of major concern. Parameters which influence the
performance of a BDD package include the choice of the
programming language and the software and hardware
platforms, BDD node structure, type of garbage collection,
unique and operation hash table strategies [6-8].

Parallel computing can be used to efficiently solve large-
scale problems, either by distributing computational loads
among processors or by utilizing the large memory in parallel
networked workstations. Parallel processing of BDDs can be
used both to reduce the BDD algorithm running time and to
extend the memory limitations which exist in the traditional
single-processor sequential computing.

In order to increase the performance of BDD packages, the
concept of parallelism has been introduced to the BDD
representations and algorithms in several papers. In [9], a
parallel algorithm for the construction of BDDs is described.
The algorithm is motivated by the fact that the construction of
a BDD, for certain large or particularly complex Boolean
functions, can be a very time-consuming task. In order to
overcome limitations of computational resources, research in
[10] presents an approach which distributes the BDD data
structure across multiple networked workstations. Further,
several techniques are introduced which allow parallelization
of depth-first search algorithms on a BDD. Reference [11]
presents a parallel algorithm for BDD construction targeted at
shared memory multiprocessors and distributed shared
memory systems. The results obtained using a shared memory
multiprocessors system show speedups of over 2×, with four
processors, and up to 4×, with eight processors. Alongside the
research on parallel BDD construction, various BDD-
algorithm parallel implementations were developed for
networks of workstations [12-14]. In [15], some key
algorithms for performing BDD operations are first described
and, afterwards, an approach to their parallelization is
described, with a goal to achieve efficient execution of BDD
packages on multicore CPUs. The technique of general
purpose computing on the GPU (GPGPU) enables parallel
processing of non-graphics algorithms using graphics
hardware. Only recently, the possibility of using GPUs to
solve complex problems in logic design has been explored by
researchers, for example in [16-20].

Motivated by the exisiting research on efficient execution
of parallel BDD operations on multicore CPUs and possibility
of using GPUs, in this paper we propose an efficient
implementation of a BDD package using the GPU platform.
The proposed implementation exploits the various sources of
parallelism that exist in BDD packages. We address several
topics considering parallel computations in BDD packages
and present their mapping to the GPU architecture. The
experimental results confirm that the application of the
proposed implementation of a parallelized BDD package leads
to significant computational speedups over traditional C/C++
implementations processed on CPUs.

1Miloš M. Radmanović is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
milos.radmanovic@gmail.com

2Dušan B. Gajić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
dusan.b.gajic@gmail.com

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

216

The paper is organized as follows: Section 2 shortly
introduces the BDD representation of Boolean functions.
Section 3 describes the structure of a BDD package and the
basic BDD algorithms. Section 4 presents the GPU as a
computing platform. Section 5 discusses the operations in the
BDD package for which we introduce the GPU processing.
Section 6 shows experimental results obtained with the
proposed implementation. Finally, Section 7 offers some
concluding remarks and directions for future work.

II. BINARY DECISION DIAGRAMS

BDDs consist of non-terminal (decision) nodes, 0-edges
and 1-edges attached to all non-terminal nodes, a ‘0’ terminal
node, and a ‘1’ terminal node, as shown in Fig.1. The non-
terminal node with no upper nodes is called a root node. As it
can be seen from Fig.1, a variable is related to every non-
terminal node, such that every path from the root node to one
of the terminal nodes respects the same variable ordering.

A Boolean function can be converted into an equivalent
function by performing Shannon expansion based on the fixed
variable ordering. This new function can be represented by a
binary tree. The corresponding BDD is constructed from this
binary tree by applying the two reduction rules (redundant
node elimination and equivalent sub-graphs sharing). The
Boolean operations such as the logical AND, logical OR, etc.,
can be achieved by using BDD manipulations, which have an
average time complexity propositional to the size of BDDs. It
is well known that the size of the BDD for a given Boolean
function depends on the variable order for the function. The
strength of BDDs is that they can represent Boolean function
data with high level of redundancy in a compressed form.

Fig. 1. BDD representation of the function defined by the truth table
F = [00101111]T.

BDD computations are memory intensive, especially when
large BDDs are involved. They not only require a lot of
memory, but also frequent accesses to many small data
structures. Furthermore, many intermediate BDD results are
created to arrive at a resulting BDD. These computations may
have poor memory handling, as there is not a solution to
ensure that the accessed BDD nodes are close in memory. It is
important to have a garbage collector component [24] to
automatically remove BDD nodes that are no longer useful. In
modern BDD packages, garbage collector component is based
on reference counting and the recycling of nodes for later
reuse. Garbage collection is activated when the percentage of
the unusable BDD nodes reaches a threshold. Unusable BDD
nodes are nodes with zero reference counts. Some of unusable
BDD nodes may become usable again (recycled) if they are
obtained as results of new subproblems. Thus, in the case
when BDD nodes change state between „usable“ and
„unusable“ frequently, garbage collection can reduce the
benefit of the operation tables and decrease the overall
performance of a BDD package.

III. BDD PACKAGES

BDD packages are deployed in many software tools,
particularly in the area of logic design, and they typically deal
with the following common implementation features [1]. A
BDD package has three main components [21]:
 The BDD algorithm component,
 Dynamic variable reordering component,
 Garbage collection component.

The BDD algorithm component builds the result BDDs for
various Boolean operations. The implementation of these

algorithms is typically based on the BDD node data structure,
unique and operation tables, and depth-first BDD traversal.

The decisions made in defining the BDD node data
structure have impact on memory space requirements for
storing node objects. There are many choices for defining a
BDD node object, but every node usually contains: an id, then
cofactor, else cofactor, next pointer, and reference counter
[22]. The BDD construction is based on applying the traversal
in a depth-first manner.

The maintance of a BDD representation is improved by
storing BDD nodes in a dictionary, called the unique table.
The unique table maps a unique triple of (v, g, h) for a BDD
node, where v is the variable identifier, g is the node
connected to the "1" edge, and h is the node connected to the
"0" edge. The unique table is a hash table with the hash
collisions resolved by chaining. A hash function is applied to
the triple to obtain the index in the unique table of the start of
a collision chain of nodes. Comparing the unique triple
against the nodes in the collision chain addresses the look up.

The efficient implementation of almost all recursive BDD
manipulation algorithms is made possible by the operation
table. This table is also implemented as a hash table with the
collisions resolved by chaining. The collision lists can be kept
sorted to reduce the number of memory accesses required on
average for the lookup. Table sizes which are prime numbers
require an expensive modulo operation. Table sizes that are a
power of 2 are often better handled by memory management.

As the variable ordering can have significant impact on the
size of a BDD, dynamic variable reordering component is a
fundamental part of all modern BDD packages. Dynamic
variable reordering algorithms are generally based on the
shifting algorithm [23]. The BDD variable order changes by
exchanging nodes in one level with nodes in the neighbouring
levels. Dynamic variable ordering should best be invoked as
an asynchronous process that can be activated at any time
during the BDD manipulation. Dynamic variable ordering is a
complex problem since finding an optimal ordering is NP-
hard. Futher, small changes in the BDD ordering may have
significant impact on both the space and time requirements.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

217

IV. THE GPU ARCHITECTURE AND GPGPU

Processor frequency progress, which followed the Moore’s
law for more than four decades, reached a limit in 2003,
mostly due to the inability to further solve the problems of
heat dissipation and energy consumption. Since then, there are
two approaches in the development of computer architectures.
The multicore approach, typical for CPUs, seeks to maintain
the execution speed of sequential programs while moving into
multiple cores. In contrast, the manycore approach, found in
GPUs, focuses more on the execution throughput of parallel
applications. This resulted in a rapid evolution of GPU
architectures. The GPU evolution started from fixed-function
hardware specialized for rendering computer graphics, which
first appeared in 1999, and developed into a massively
parallel, scalable, and fully programmable platform
characterized by exquisite memory bandwidth and
computational power. Due to this, many of the general-
purpose applications which were processed on CPUs are now
re-implemented in order to efficiently harness the GPU
resources. For more details on recent changes that made
GPGPU possible, see [25, 26, 27, 28].

The GPU parallel processing model is based on a large
number of processor cores which can directly address into a
global GPU memory. The GPU architecture follows the single
program, multiple data (SPMD) paradigm [26, 27], features a
multi-level memory hierarchy and has simple branching
circuits. In SPMD computing, a large number of threads
execute in parallel the same function, called a kernel, over
different data.

Application Programming Interfaces (APIs) most often
used for the development of GPGPU programs are Nvidia’s
CUDA and Open Computing Language - OpenCL. CUDA is a
vendor-specific development framework and only supports
execution on Nvidia’s GPU hardware. Therefore, we give
advantage to OpenCL which is hardware agnostic. Further,
the OpenCL C programming language, included in the
framework, allows development of programs that are both
accelerated and portable across a wide set of devices (CPUs,
GPUs, Field Programmable Gate Arrays (FPGAs), Digital
Signal Processors (DSPs), Cell processors, embedded
processors) [28].

V. GPU ACCELERATION IN THE BDD PACKAGE

Motivated by the existing work on the parallelization of
components in BDD packages, described in Section 1, we
explored various sources of parallelism that exists within the
algorithms included in BDD packages in order to develop an
efficient model of parallel BDD operations on GPUs. The
components of the BDD package that take advantage of the
GPU processing in our present solution are the BDD
algorithm and the garbage collection components.

The effectiveness of caching within unique and operation
tables of the BDD algorithm component strongly influences
the number of subproblems generated in the BDD algorithm
task execution. Thus, the hash tables (unique and operation
tables) in a BDD package need to support concurrent
execution of the hash operation lookup_insert(key). This

operation is a crucial component of the Apply procedure
which is central to the BDD construction and manipulation
[1]. The lookup_insert operation returns the key, if it already
exists in the hash table, or, otherwise, inserts the key.
Reference [15] shows how this operation can be safely
executed in parallel on multicore processors. The
lookup_insert operation within the BDD algorithm component
in our BDD package is, therefore, implemented as an OpenCL
kernel which performs the same function over different keys.
Since GPUs use hardware multithreading [25, 26, 27], this
automatically allows simultaneous execution of as many
lookup_insert operations as there are active GPU threads.

The effectiveness of garbage collection component can
have significant impact on both space and time requirements
of a BDD package. When garbage collector removes unusable
BDD nodes, the unique and the operation table entries that
reference these nodes must also be removed to eliminate
unusable references. If garbage collection is not invoked
frequently enough, the memory usage can be greatly
increased. An OpenCL kernel for garbage collection is
developed so that each GPU thread removes an entry from the
hash tables. Since thousands of GPU threads can be active at
the same time, this leads to a massively-parallel GPU garbage
collection. The transfer of the garbage collection task to the
GPU, also allows the CPU to be free to perform other tasks
for which it may be more suitable.

VI. EXPERIMENTAL RESULTS

In this section, we compare the performance of our GPU
accelerated BDD package implementation, which incorporates
the before-mentioned OpenCL kernels, and a single-threaded
C/C++ implementation of the BDD package on the CPU. For
the comparison, we use a set of well-known standard
benchmarks. Table I presents a view on the performance of
the BDD package computations performed in the basic BDD
construction algorithm on the CPU and the GPU.

TABLE I
COMPARISON OF THE BDD CONSTRUCTION TIMES FOR THE BDD

PACKAGE ON THE CPU AND THE GPU

computation time [s] Benchmark in / out / cubes CPU GPU
alu4 14 / 8 / 1028 0.15 0.08
apex1 45 / 45 / 206 5.18 0.81
apex2 39 / 3 / 1035 3.31 0.62
apex5 117 / 88 / 1227 0.30 0.17
cordic 23 / 2 /1206 0.06 0.04
cps 24 / 109 / 654 0.15 0.09
misex2 25 / 18 /29 0.05 0.03
misex3 14 / 14 / 1848 0.03 0.02
table3 14 / 14 / 135 0.02 0.02
table5 17 / 15 / 158 0.01 0.01

The test platform features an Intel i7-920 quad-core

processor, operating at 2.66 GHz, and has 4 GBs of DDR3-
2000 RAM. GPU that is used is an Nvidia GeForce GTX
560Ti with 1GB of GDDR5 RAM, composed of 384

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

218

streaming processors. The OpenCL kernels are developed
using the AMD Accelerated Parallel Programming SDK 2.6.

The size of the unique and the operation tables is limited to
8191 entries. The garbage collection is activated if the hash
tables exceed the 80%-full marker. All benchmarks are used
in the Espresso-mv or pla format [29] and the computation
times are reported in seconds.

 As it can be seen from Table I, the addition of the GPU
acceleration to the BDD package brings clear performance
benefits over the CPU-only solution. The speedup, in terms of
the BDD construction algorithm computation time, for most
of the cases is substantial and varies from 6.4× to 1.5×.
However, it should be noted that the speedup may not be
achieved in some cases, e.g., in the case of the benchmark
table3, because the construction of the BDD in this case is not
enough computationally-intensive to benefit from the
introduction of the GPU.

VII. CONCLUSION

This paper proposes an implementation of a BDD package
which uses the GPU hardware for the acceleration of certain
data-parallel operations. The proposed implementation
exploits several sources of parallelism that exist within BDD
packages. In particular, we discuss the parallel OpenCL
implementation of the lookup_insert hash operation, which is
of central importance to the BDD algorithm component, and a
GPU-accelerated garbage collection component. The
experimental results confirm that the application of the
proposed implementation, which distributes the BDD package
operations over the CPU and the GPU, leads to significant
computational speedups. The results presented in the paper
may also be helpful in the general study on improvement of
BDD packages. Since these first research results look
promising, further work on this topic will be devoted to the
extension of the GPU acceleration method to the
implementation of other operations that are common in the
components of BDD packages.

REFERENCES

[1] K. Brace, R. Rudell, R. Bryant, "Efficient implementation of a
BDD package", in Proc. Design Automation Conf., 1990, 40-45.

[2] J. Sangavi, R. Ranjan, R. Bryton, A. Sangiovanni-Vincentelli,
"High performance BDD package based on exploiting memory
hierarchy", in Proc. of the Design Automation Conf., 1996.

[3] D. Long, “The design of cache-friendly BDD library“, in Proc.
1998 IEEE/ACM Intl. Conf. on CAD, 1998, 639 - 645.

[4] G. Janssen, “Design of pointerless BDD package“, 10th Int.
Workshop on Logic&Synthesis, Lake Tahoe, USA, 2001.

[5] R. Ebendt, F. Gorschwin, R. Drechsler, Advanced BDD
Minimization, Springer, New York, 2005.

[6] G. Janssen, “A consumer report on BDD packages“, in Proc.
16th Symp. Integrated Circuits and Systems Design, 2003, 217-
223.

[7] F. Somenzi, “Efficient manipulation of decision diagrams,” Int.
J. Software Tools for Technology Transfer (STTT), vol. 3, no. 2,
2001, 171-181.

[8] M. Sentovich, "A brief study of BDD package performance", in
Proc. of the Formal Methods on CAD, 1996, 389-403.

[9] S. Kimura, E.M. Clarke, "A parallel algorithm for constructing
binary decision diagrams", in IEEE Intl. Conf. on Computer
Design: VLSI in Computers and Processors, 1990, 220-223.

[10] T. Stornetta, F. Brewer, “Implementation of an efficient parallel
BDD package”, in Proc. of Design Automation Conf., Las
Vegas, USA, 1996, 641-644.

[11] B. Yang, D. R. O'Hallaron, “Parallel breadth-first BDD
construction”, 9th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1997, 145-156.

[12] D. Caban, D. Milford, "A parallel BDD engine for logic
verification", in Proc. 5th Annual IEEE Int. ASIC Conf. and
Exhibit, 1992, 499-502.

[13] R.K. Ranjan, J.V. Sanghavi, R.K. Brayton, A. Sangiovanni-
Vincentelli, "Binary decision diagrams on network of
workstations," IEEE Int. Conf. on Computer Design: VLSI in
Computers and Processors, 1996, 358-364.

[14] K. Milvang-Jensen, J. Alan, "BDDNOW: A parallel BDD
package", in Proc. 2nd Int. Conf. on Formal Methods in
Computer-Aided Design, 1998, 501-507.

[15] H. Yuxiong, “Multicore-enabling a binary decision diagram
algorithm”, Intel Software Network, 2009,
http://software.intel.com/en-us/articles/multicore-enabling-a-
binary-decision-diagram-algorithm.

[16] K. Gulati, S. Khatri. “Towards acceleration of fault simulation
using graphics processing units”, in Proc. 45th ACM/IEEE
Design Automation Conference, 2008, 822-827.

[17] V. Bertacco, D. Chatterjee, “High performance gate-level
simulation with GP-GPU computing”, Int. Symp. on VLSI
Design, Automation and Test, 2011, 1-3.

[18] D. Chatterjee, V. Bertacco, "EQUIPE: parallel equivalence
checking with GP-GPUs", IEEE Int. Conference on Computer
Design, 2010, 486-493.

[19] D. Gajić, R. Stanković, "GPU accelerated computation of fast
spectral transforms", Facta Universitatis - Series: Electronics
and Energetics, vol. 24, no. 3, University of Niš, Serbia, 2011,
483-499.

[20] D. Gajić, R. Stanković, M. Radmanović, “Implementation of
dyadic correlation and autocorrelation on graphics processors”,
Int. J. Reasoning-based Intelligent Systems (IJRIS), vol. 4, nos.
1/2, Inderscience, Geneva, Switzerland, 2012, 82-90.

[21] B. Yang, "Optimizing model checking based on BDD
characterization", PhD Dissertation, Carnegie Mellon University
Pittsburgh, USA, 1999.

[22] B. Yang et al., “A study of BDD performance in model
checking”, in Proc. Formal Methods in CAD, 1998, 255-289.

[23] R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams”, in Proc. Int. Conf. on Computer-Aided
Design, 1993, 139–144.

[24] N. Klarlund, T. Rauhe, "BDD algorithms and cache misses",
BRICS Report Series RS-96-5, Department of Computer
Science, University of Aarhus, 1996.

[25] T. Aamodt, “Architecting graphics processors for non-graphics
compute acceleration’, in Proc. IEEE PACRIM Conf., 2009,
963-968.

[26] S. Ryoo, et al., “Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA”,
in Proc. 13th ACM SIGPLAN Symp. on Principles and Practice
of Parallel Programming, 2008, 73–82.

[27] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J.
Phillips, “GPU computing”, Proc. of the IEEE, vol. 96, no. 5,
2008, 279–299.

[28] B. Gaster et al., Heterogeneous Computing with OpenCL,
Elsevier, 2011.

[29] R. Rudell, Espresso Misc. Reference Manual Pages,
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/ind
ex.html, 1993.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

219

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.html
http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.html

