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Abstract – Efficient construction and manipulation of Binary 
Decision Diagrams (BDDs) is an important component of 
Computer Aided Design (CAD) tasks. One solution to improve the 
performance of BDD packages is to perform some of the BDD 
operations in parallel using the Graphics Processing Unit (GPU). 
The recent evolution of GPU frameworks for programming general 
purpose computations, such as the OpenCL and Nvidia CUDA, has 
offered GPUs as a powerful and attractive choice for developing 
high-performance numerical applications. In this work, we propose 
an efficient implementation of a BDD package which distributes 
computations over central processing units (CPUs) and GPUs. The 
proposed implementation exploits various sources of parallelism 
that can be found in BDD packages. The experimental results 
confirm that the application of the proposed solution leads to 
significant computational speedups in BDD packages. 
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I. INTRODUCTION 

Binary Decision Diagrams (BDDs) are the dominant data 
structure for representing Boolean functions in CAD 
applications. The application of BDDs is further extended 
with their use in various areas of computer science and 
engineering. In practice, the success of BDD representations 
depends on the abillity to efficiently manipulate large BDDs. 
Therefore, considerable research has been conducted in order 
to develop more efficient implementations of BDD algorithms 
[1-5].  

BDD algorithms are usually built on top of BDD packages. 
Many BDD package implementations have been developed in 
a variety of programming languages and most of them are 
freely available as public domain on the Internet. The choice 
of a BDD package for a certain application is typically guided 
by the following package characteristics: functionality, 
software interface, robustness, reliability, portability, support, 
and performance. In most cases, the performance of a BDD 
package is of major concern. Parameters which influence the 
performance of a BDD package include the choice of the 
programming language and the software and hardware 
platforms, BDD node structure, type of garbage collection, 
unique and operation hash table strategies [6-8].        

Parallel computing can be used to efficiently solve large-
scale problems, either by distributing computational loads 
among processors or by utilizing the large memory in parallel 
networked workstations. Parallel processing of BDDs can be 
used both to reduce the BDD algorithm running time and to 
extend the memory limitations which exist in the traditional 
single-processor sequential computing.     

In order to increase the performance of BDD packages, the 
concept of parallelism has been introduced to the BDD 
representations and algorithms in several papers. In [9], a 
parallel algorithm for the construction of BDDs is described. 
The algorithm is motivated by the fact that the construction of 
a BDD, for certain large or particularly complex Boolean 
functions, can be a very time-consuming task. In order to 
overcome limitations of computational resources, research in 
[10] presents an approach which distributes the BDD data 
structure across multiple networked workstations. Further, 
several techniques are introduced which allow parallelization 
of depth-first search algorithms on a BDD. Reference [11] 
presents a parallel algorithm for BDD construction targeted at 
shared memory multiprocessors and distributed shared 
memory systems. The results obtained using a shared memory 
multiprocessors system show speedups of over 2×, with four 
processors, and up to 4×, with eight processors. Alongside the 
research on parallel BDD construction, various BDD-
algorithm parallel implementations were developed for 
networks of workstations [12-14]. In [15], some key 
algorithms for performing BDD operations are first described 
and, afterwards, an approach to their parallelization is 
described, with a goal to achieve efficient execution of BDD 
packages on multicore CPUs. The technique of general 
purpose computing on the GPU (GPGPU) enables parallel 
processing of non-graphics algorithms using graphics 
hardware. Only recently, the possibility of using GPUs to 
solve complex problems in logic design has been explored by 
researchers, for example in [16-20].  

Motivated by the exisiting research on efficient execution 
of parallel BDD operations on multicore CPUs and possibility 
of using GPUs, in this paper we propose an efficient 
implementation of a BDD package using the GPU platform. 
The proposed implementation exploits the various sources of 
parallelism that exist in BDD packages. We address several 
topics considering parallel computations in BDD packages 
and present their mapping to the GPU architecture. The 
experimental results confirm that the application of the 
proposed implementation of a parallelized BDD package leads 
to significant computational speedups over traditional C/C++ 
implementations processed on CPUs. 
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The paper is organized as follows: Section 2 shortly 
introduces the BDD representation of Boolean functions. 
Section 3 describes the structure of a BDD package and the 
basic BDD algorithms. Section 4 presents the GPU as a 
computing platform. Section 5 discusses the operations in the 
BDD package for which we introduce the GPU processing.   
Section 6 shows experimental results obtained with the 
proposed implementation.  Finally, Section 7 offers some 
concluding remarks and directions for future work.    

II. BINARY DECISION DIAGRAMS  

BDDs consist of non-terminal (decision) nodes, 0-edges 
and 1-edges attached to all non-terminal nodes, a ‘0’ terminal 
node, and a ‘1’ terminal node, as shown in Fig.1. The non-
terminal node with no upper nodes is called a root node. As it 
can be seen from Fig.1, a variable is related to every non-
terminal node, such that every path from the root node to one 
of the terminal nodes respects the same variable ordering.  

A Boolean function can be converted into an equivalent 
function by performing Shannon expansion based on the fixed 
variable ordering. This new function can be represented by a 
binary tree. The corresponding BDD is constructed from this 
binary tree by applying the two reduction rules (redundant 
node elimination and equivalent sub-graphs sharing). The 
Boolean operations such as the logical AND, logical OR, etc., 
can be achieved by using BDD manipulations, which have an 
average time complexity propositional to the size of BDDs. It 
is well known that the size of the BDD for a given Boolean 
function depends on the variable order for the function. The 
strength of BDDs is that they can represent Boolean function 
data with high level of redundancy in a compressed form.  

 

Fig. 1.  BDD representation of the function defined by the truth table        
F  = [00101111]T. 

     

BDD computations are memory intensive, especially when 
large BDDs are involved. They not only require a lot of 
memory, but also frequent accesses to many small data 
structures. Furthermore,  many intermediate BDD results are 
created to arrive at a resulting BDD. These computations may 
have poor memory handling, as there is not a solution to 
ensure that the accessed BDD nodes are close in memory. It is 
important to have a garbage collector component [24] to 
automatically remove BDD nodes that are no longer useful. In 
modern BDD packages, garbage collector component is based 
on reference counting and the recycling of nodes for later 
reuse. Garbage collection is activated when the percentage of 
the unusable BDD nodes reaches a threshold.  Unusable BDD 
nodes are nodes with zero reference counts. Some of unusable 
BDD nodes may become usable again (recycled) if they are 
obtained as results of new subproblems.  Thus, in the case 
when BDD nodes change state between „usable“ and 
„unusable“ frequently, garbage collection can reduce the 
benefit of the operation tables and decrease the overall 
performance of a BDD package.  

III. BDD PACKAGES 

BDD packages are deployed in many software tools, 
particularly in the area of logic design, and they typically deal 
with the following common implementation features [1]. A 
BDD package has three main components [21]:  
  The BDD algorithm component,  
 Dynamic variable reordering component,  
 Garbage collection component.  

The BDD algorithm component builds the result BDDs for 
various Boolean operations. The implementation of these 

algorithms is typically based on the BDD node data structure, 
unique and operation tables, and depth-first BDD traversal.  

The decisions made in defining the BDD node data 
structure have impact on memory space requirements for 
storing node objects. There are many choices for defining a 
BDD node object, but every node usually contains: an id, then 
cofactor, else cofactor, next pointer, and reference counter 
[22]. The BDD construction is based on applying the traversal 
in a depth-first manner.  

The maintance of a BDD representation is improved by 
storing BDD nodes in a dictionary, called the unique table. 
The unique table maps a unique triple of (v, g, h) for a BDD 
node, where v is the variable identifier, g is the node 
connected to the "1" edge, and h is the node connected to the 
"0" edge. The unique table is a hash table with the hash 
collisions resolved by chaining. A hash function is applied to 
the triple to obtain the index in the unique table of the start of 
a collision chain of nodes. Comparing the unique triple 
against the nodes in the collision chain addresses the look up. 

The efficient implementation of almost all recursive BDD 
manipulation algorithms is made possible by the operation 
table. This table is also implemented as a hash table with the 
collisions resolved by chaining. The collision lists can be kept 
sorted to reduce the number of memory accesses required on 
average for the lookup. Table sizes which are prime numbers 
require an expensive modulo operation. Table sizes that are a 
power of 2 are often better handled by memory management. 

As the variable ordering can have significant impact on the 
size of a BDD, dynamic variable reordering component is a 
fundamental part of all modern BDD packages. Dynamic 
variable reordering algorithms are generally based on the 
shifting algorithm [23]. The BDD variable order changes by 
exchanging nodes in one level with nodes in the neighbouring 
levels.  Dynamic variable ordering should best be invoked as 
an asynchronous process that can be activated at any time 
during the BDD manipulation. Dynamic variable ordering is a 
complex problem since finding an optimal ordering is NP-
hard. Futher, small changes in the BDD ordering may have 
significant impact on both the space and time requirements. 

I C E S T  2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

217



IV. THE GPU ARCHITECTURE AND GPGPU  

Processor frequency progress, which followed the Moore’s 
law for more than four decades, reached a limit in 2003, 
mostly due to the inability to further solve the problems of 
heat dissipation and energy consumption. Since then, there are 
two approaches in the development of computer architectures. 
The multicore approach, typical for CPUs, seeks to maintain 
the execution speed of sequential programs while moving into 
multiple cores. In contrast, the manycore approach, found in 
GPUs, focuses more on the execution throughput of parallel 
applications. This resulted in a rapid evolution of GPU 
architectures. The GPU evolution started from fixed-function 
hardware specialized for rendering computer graphics, which 
first appeared in 1999, and developed into a massively 
parallel, scalable, and fully programmable platform 
characterized by exquisite memory bandwidth and 
computational power. Due to this, many of the general- 
purpose applications which were processed on CPUs are now 
re-implemented in order to efficiently harness the GPU 
resources. For more details on recent changes that made 
GPGPU possible, see [25, 26, 27, 28]. 

The GPU parallel processing model is based on a large 
number of processor cores which can directly address into a 
global GPU memory. The GPU architecture follows the single 
program, multiple data (SPMD) paradigm [26, 27], features a 
multi-level memory hierarchy and has simple branching 
circuits. In SPMD computing, a large number of threads 
execute in parallel the same function, called a kernel, over 
different data.   

Application Programming Interfaces (APIs) most often 
used for the development of GPGPU programs are Nvidia’s 
CUDA and Open Computing Language - OpenCL. CUDA is a 
vendor-specific development framework and only supports 
execution on Nvidia’s GPU hardware. Therefore, we give 
advantage to OpenCL which is hardware agnostic. Further, 
the OpenCL C programming language, included in the 
framework, allows development of programs that are both 
accelerated and portable across a wide set of devices (CPUs, 
GPUs, Field Programmable Gate Arrays (FPGAs), Digital 
Signal Processors (DSPs), Cell processors, embedded 
processors) [28]. 

V. GPU ACCELERATION IN THE BDD PACKAGE  

Motivated by the existing work on the parallelization of 
components in BDD packages, described in Section 1, we 
explored various sources of parallelism that exists within the 
algorithms included in BDD packages in order to develop an 
efficient model of parallel BDD operations on GPUs. The 
components of the BDD package that take advantage of the 
GPU processing in our present solution are the BDD 
algorithm and the garbage collection components. 

The effectiveness of caching within unique and operation 
tables of the BDD algorithm component strongly influences 
the number of subproblems generated in the BDD algorithm 
task execution. Thus, the hash tables (unique and operation 
tables) in a BDD package need to support concurrent 
execution of the hash operation lookup_insert(key). This 

operation is a crucial component of the Apply procedure 
which is central to the BDD construction and manipulation  
[1]. The lookup_insert operation returns the key, if it already 
exists in the hash table, or, otherwise, inserts the key. 
Reference [15] shows how this operation can be safely 
executed in parallel on multicore processors. The 
lookup_insert operation within the BDD algorithm component 
in our BDD package is, therefore, implemented as an OpenCL 
kernel which performs the same function over different keys. 
Since GPUs use hardware multithreading [25, 26, 27], this 
automatically allows simultaneous execution of as many 
lookup_insert operations as there are active GPU threads. 

The effectiveness of garbage collection component can 
have significant impact on both space and time requirements 
of a BDD package. When garbage collector removes unusable 
BDD nodes, the unique and the operation table entries that 
reference these nodes must also be removed to eliminate 
unusable references. If garbage collection is not invoked 
frequently enough, the memory usage can be greatly 
increased. An OpenCL kernel for garbage collection is 
developed so that each GPU thread removes an entry from the 
hash tables. Since thousands of GPU threads can be active at 
the same time, this leads to a massively-parallel GPU garbage 
collection. The transfer of the garbage collection task to the 
GPU, also allows the CPU to be free to perform other tasks 
for which it may be more suitable.  

VI. EXPERIMENTAL RESULTS  

In this section, we compare the performance of our GPU 
accelerated BDD package implementation, which incorporates 
the before-mentioned OpenCL kernels, and a single-threaded 
C/C++ implementation of the BDD package on the CPU. For 
the comparison, we use a set of well-known standard 
benchmarks. Table I presents a view on the performance of 
the BDD package computations performed in the basic BDD 
construction algorithm on the CPU and the GPU.  

TABLE I 
COMPARISON OF THE BDD CONSTRUCTION TIMES FOR THE BDD 

PACKAGE ON THE CPU AND THE GPU  

computation time [s] Benchmark in / out / cubes  CPU GPU 
alu4 14 / 8 / 1028 0.15 0.08 
apex1 45 / 45 / 206 5.18 0.81 
apex2 39 / 3 / 1035 3.31 0.62 
apex5 117 / 88 / 1227 0.30 0.17 
cordic 23 / 2 /1206 0.06 0.04 
cps 24 / 109 / 654 0.15 0.09 
misex2 25 / 18 /29 0.05 0.03 
misex3 14 / 14 / 1848 0.03 0.02 
table3 14 / 14 / 135 0.02 0.02 
table5 17 / 15 / 158 0.01 0.01 

 
The test platform features an Intel i7-920 quad-core 

processor, operating at 2.66 GHz, and has 4 GBs of DDR3-
2000 RAM. GPU that is used is an Nvidia GeForce GTX 
560Ti with 1GB of GDDR5 RAM, composed of 384 
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streaming processors. The OpenCL kernels are developed 
using the AMD Accelerated Parallel Programming SDK 2.6.   

The size of the unique and the operation tables is limited to 
8191 entries. The garbage collection is activated if the hash 
tables exceed the 80%-full marker. All benchmarks are used 
in the Espresso-mv or pla format [29] and the computation 
times are reported in seconds. 

 As it can be seen from Table I, the addition of the GPU 
acceleration to the BDD package brings clear performance 
benefits over the CPU-only solution. The speedup, in terms of 
the BDD construction algorithm computation time, for most 
of the cases is substantial and varies from 6.4× to 1.5×. 
However, it should be noted that the speedup may not be 
achieved in some cases, e.g., in the case of the benchmark 
table3, because the construction of the BDD in this case is not 
enough computationally-intensive to benefit from the 
introduction of the GPU. 

VII. CONCLUSION 

This paper proposes an implementation of a BDD package 
which uses the GPU hardware for the acceleration of certain 
data-parallel operations. The proposed implementation 
exploits several sources of parallelism that exist within BDD 
packages. In particular, we discuss the parallel OpenCL 
implementation of the lookup_insert hash operation, which is 
of central importance to the BDD algorithm component, and a 
GPU-accelerated garbage collection component. The 
experimental results confirm that the application of the 
proposed implementation, which distributes the BDD package 
operations over the CPU and the GPU, leads to significant 
computational speedups. The results presented in the paper 
may also be helpful in the general study on improvement of 
BDD packages. Since these first research results look 
promising, further work on this topic will be devoted to the 
extension of the GPU acceleration method to the 
implementation of other operations that are common in the 
components of BDD packages.  
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