
Cloud systems for environmental telemetry - A case study 
for ecological monitoring in agriculture 

George Suciu1, Octavian Fratu1, Cristian Cernat1, Traian Militaru1, Gyorgy Todoran1 and 
Vlad Poenaru1  

Abstract – Large telemetry systems have several hundreds of 
RTUs that are sending data to be processed by intelligence 
algorithms and stored in a database that is accessible via Web 
interface on the Internet. In this paper we present the way in 
which SlapOS, an open source provisioning and billing system 
for distributed cloud computing, is used to gather centrally 
environmental information from different sensors at remote 
observation points. 
 

Keywords – Cloud, Telemetry, Sensors, Remote monitoring, 
RTU. 
 

I. INTRODUCTION 

In this paper we develop a test platform for environmental 
telemetry and use it as a case study for monitoring ecological 
parameters in agriculture. We use different types of RTUs 
(Radio Transmission Units) and Sensors that monitor and 
transmit important information such as temperature, 
precipitation, wind speed and leaf wetness from selected 
locations. 

The RTUs will transmit sensor data over GSM/GPRS to our 
cloud platform where we can conveniently process the site-
specific weather and soil data in near real-time, display it in 
our web-based visualization application and get detailed 
recommendations when and where to spray and how much to 
irrigate - resulting in optimized yield, quality and income. 

Our system can also help keeping track of pathogen 
development, optimize treatments to hit a disease dead on, 
warn of frost, and to produce crops as environmentally friendly 
as possible and to improve agricultural risk management. 
Falling producer prices and rising costs of production are 
increasingly forcing agricultural businesses to optimize 
production costs [1]. Therefore "precision farming", the 
selective use of inputs such as water, fertilizers or chemicals, is 
now indispensable in modern agriculture. The growing 
environmental awareness of consumers further accelerates this 
process and promotes the usage of remote automatic 
monitoring system for field information such as the one we 
developed [2]. 

We will introduce in this article SlapOS, the first open 
source operating system for Distributed Cloud Computing. 
SlapOS is based on a grid computing daemon called slapgrid 
which is capable of installing any software on a PC and 
instantiate any number of processes of potentially infinite 

duration of any installed software. Slapgrid daemon receives 
requests from a central scheduler the SlapOS Master which 
collects back accounting information from each process. 
SlapOS Master follows an Enterprise Resource Planning 
(ERP) model to handle at the same time process allocation 
optimization and billing. SLAP stands for “Simple Language 
for Accounting and Provisioning”. 

This structure has been implemented for cloud-based 
automation of ERP and CRM software for small businesses 
and aspects are under development under the framework of the 
European research project “Cloud Consulting” [3]. We will use 
our platform hosted on several servers running Ubuntu Linux – 
Apache – MySQL template with current software release. On 
our cloud testing environment we provide the platform for 
processing information from hundreds different sensors, 
enabling the analysis of environmental data through a large 
sample of RTUs. 

In previous approaches RTUs were implemented in most 
cases on a local server and no company could aggregate 
enough sensor data to consider automating the treatment 
process. 

II. CLOUD ARCHITECTURE FOR TELEMETRY 

A. Cloud Architecture 

SlapOS is an open source Cloud Operating system which 
was inspired by recent research in Grid Computing and in 
particular by BonjourGrid [4]–[5] a meta Desktop Grid 
middleware for the coordination of multiple instances of 
Desktop Grid middleware. It is based on the motto that 
”everything is a process”.  

SlapOS is based on a Master and Slave design. In this 
chapter we are going to provide an overview of SlapOS 
architecture and are going in particular to explain the role of 
Master node and Slave nodes, as well as the software 
components which they rely on to operate a distributed cloud 
for telemetry applications. 

Slave nodes request to Master nodes which software they 
should install, which software they show run and report to 
Master node how much resources each running software has 
been using for a certain period of time. Master nodes keep 
track of available slave node capacity and available software. 
Master node also acts as a Web portal and Web service so that 
end users and software bots can request software instances 
which are instantiated and run on Slave nodes. Master nodes 
are stateful. Slave nodes are stateless. More precisely, all 
information required to rebuild a Slave node is stored in the 
Master node. This may include the URL of a backup service 
which keeps an online copy of data so that in case of failure of 

1The authors are with the Faculty of Electronics,
Telecommunications and Information Technology at Politehnica 
University of Bucharest, Bd. Iuliu Maniu, nr. 1-3, Bucharest 060042, 
Romania, E-mails: george@beia.ro, ofratu@elcom.pub.ro,
cernatcristi@gmail.com, gelmosro@yahoo.com,
todoran.gyorgy@gmail.com, vlad.wing@gmail.com.   

I C E S T  2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

273



a Slave node, a replacement Slave node can be rebuilt with the 
same data. 

It is thus very important to make sure that the state data 
present in Master node is well protected. This could be 
implemented by hosting Master node on a trusted IaaS 
infrastructure with redundant resource. Or - better - by hosting 
multiple Master nodes on many Slave nodes located in 
different regions of the world thanks to appropriate data 
redundancy heuristic. We are touching here the first reflexive 
nature of SlapOS. A SlapOS master is normally a running 
instance of SlapOS Master software instantiated on a 
collection of Slave nodes which, together, form a trusted 
hosting infrastructure. In other terms, SlapOS is self-hosted, 
as seen in Fig. 1. 

 

 

Fig. 1. SlapOS Master – Slave Architecture 

B. SlapOS Master 

SlapOS master nodes keep track of the identity of all parties 
which are involved in the process of requesting Cloud 
resources, accounting Cloud resources and billing Cloud 
resources. This includes end users (Person) and their company 
(Organisation). It includes suppliers of cloud resources as well 
as consumers of cloud resources. It also includes so-called 
computer partitions which may run a software robot to request 
Cloud resources without human intervention. It also includes 
Slave nodes which need to request to SlapOS master which 
resources should be allocated. SlapOS generated X509 
certificates for each type of identity: X509 certificates for 
people like you and me who login, an X509 certificate for 
each server which contributes to the resources of SlapOS and 
an X509 for each running software instance which may need 
to request or notify SlapOS master. A SlapOS Master node 
with a single Slave node, a single user and 10 computer 
partitions will thus generate up to 12 X509 certificates: one 
for the slave, one for the user and 10 for computer partitions. 

Any user, software or slave node with an X509 certificate 
may request resources to SlapOS Master node. SlapOS Master 
node plays here the same role as the backoffice of a 
marketplace. Each allocation request is recorded in SlapOS 
Master node as if it were a resource trading contract in which 
a resource consumer requests a given resource under certain 
conditions. The resource can be a NoSQL storage, a virtual 
machine, an ERP with web-portal interface for displaying 

sensor data and Google Maps integration for RTUs 
localization, a Wiki, etc. The conditions can include price, 
region (ex. China) or specific hardware (ex. 64 bit CPU). 
Conditions are somehow called Service Level Agreements 
(SLA) in other architectures but they are considered here 
rather as trading specifications than guarantees. It is even 
possible to specify a given computer rather than relying on the 
automated marketplace logic of SlapOS Master. 

By default, SlapOS Master acts as an automatic 
marketplace. Requests are processed by trying to find a Slave 
node which meets all conditions which were specified. 
SlapOS thus needs to know which resources are available at a 
given time, at which price and under which characteristics. 
Last, SlapOS Master also needs to know which software can 
be installed on which Slave node and under which conditions. 

C. SlapOS Slave 

SlapOS Slave nodes are relatively simple compared to the 
Master node. Every slave node needs to run software 
requested by the Master node. It is thus on the Slave nodes 
that software is installed. To save disk space, Slave nodes 
only install the software which they really need. 

Each slave node is divided into a certain number of so-
called computer partitions. One may view a computer 
partition as a lightweight secure container, based on Unix 
users and directories rather than on virtualization. A typical 
barebone PC can easily provide 100 computer partitions and 
can thus run 100 RTU web portals or 100 sensors monitoring 
sites, each of which with its own independent database. A 
larger server can contain 200 to 500 computer partitions. 

SlapOS approach of computer partitions was designed to 
reduce costs drastically compared to approaches based on a 
disk images and virtualization. As presented in Fig. 2, it does 
not prevent from running virtualization software inside a 
computer partition, which makes SlapOS at the same time 
cost efficient and compatible with legacy software. 

 

 

Fig. 2. SlapOS Slave Node 
 

SlapOS Slave software consists of a POSIX operating 
system, SlapGRID, supervisord and buildout [3]. SlapOS is 
designed to run on any operating system which supports 
GNU's glibc and supervisord. Such operating systems include 
for example GNU/Linux, FreeBSD, MacOS/X, Solaris, AIX, 
etc 

I C E S T  2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

274



D. SlapOS kernel 

SlapOS relies on mature software: buildout and 
supervisord. Both software are controlled by SLAPGrid, the 
only original software of SlapOS. SLAPGrid acts as a glue 
between SlapOS Master node (ERP5) and both buildout and 
supervisord, as shown in Fig. 3. SLAPGrid requests to 
SlapOS Master Node which software should be installed and 
executed. SLAPGrid uses buildout to install software and 
supervisord to start and stop software processes. SLAPGrid 
also collects accounting data produced by each running 
software and sends it back to SlapOS Master. 

Supervisord is a process control daemon. It can be used to 
programmatically start and stop processes with different users, 
handle their output, their log files, their errors, etc. It is a kind 
of much improved init.d which can be remotely controlled. 
Supervisord is lightweight and old enough to be really mature 
(ie. no memory leaks). 

Buildout is a Python-based build system for creating, 
assembling and deploying applications from multiple parts, 
some of which may be non-Python-based. Buildout can be 
used to build C, C++, ruby, java, perl, etc. software on Linux, 
MacOS, Windows, etc. Buildout can either build applications 
by downloading their source code from source repositories 
(subversion, git, mercurial, etc.) or by downloading binaries 
from package repositories (rpm, deb, eggs, gems, war, etc.). 
Buildout excels in particular at building applications in a way 
which is operating system agnostic and to automate 
application configuration process in a reproducible way. 

 

 

Fig. 3. SlapOS Kernel and User Software 
 

Every computer partition consists of a dedicated IPv6 
address, a dedicated local IPv4 address, a dedicated tap 
interface (slaptapN), a dedicated user (slapuserN) and a 
dedicated directory (/srv/slapgrid/slappartN). Optionally, a 
dedicated block device and routable IPv4 address can be 
defined. 

SlapOS is usually configured to use IPv6 addresses. 
Although use of IPv6 is not a requirement (an IPv4 only 
SlapOS deployment is possible) it is a strong 
recommendation. IPv6 simplifies greatly the deployment of 
SlapOS either for public Cloud applications or for private 
Cloud applications. In the case of public Clouds, use of IPv6 
helps interconnecting SlapOS Slave Nodes hosted at home 
without having to setup tunnels or complex port redirections. 

In the case of private Cloud, IPv6 replaces existing corporate 
tunnels with a more resilient protocol which provides also a 
wider and flat corporate addressing space. IPv6 addressing 
helps allocating hundreds of IPv6 addresses on a single server. 
Each running process can thus be attached to a different IPv6 
address, without having to change its default port settings. 
Accounting network traffic per computer partition is 
simplified. All this would of course be possible with IPv4 or 
through VPNs but it would be much more difficult or less 
resilient. The exhaustion of IPv4 addresses prevents in 
practice allocation of some many public IPv4 addresses to a 
single computer. After one year of experimentation with IPv6 
in Romania, using IPv6 native Internet access (more than 50% 
of worldwide IPv6 traffic), we found that IPv6 is simple to 
use and creates the condition for many innovations which 
would else be impossible. 

III. RESEARCH RESULTS AND FUTURE DESIGN 

In order to collect the information from the RTUs we 
developed the following test platform as shown in Fig. 4. The 
usage of GSM/GPRS data transmission can be extended in 
areas where there is no coverage by using a UHF bridge 
operating in the fixed frequency range 430 – 440 MHz 
connected to a gateway that has access to the Internet. 

 

 Fig. 4. General Architecture of Telemetry System 
 
The case study was done on 2 grape yards in Romania 

(Bucharest and Blaj) with the following sensors, as seen in 
Fig. 5 

 

Fig. 5. General Structure of RTU and Sensors 

I C E S T  2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

275



The total quantity of rain reported by the system during the 
months of May – September 2011 was of 222 l/sqm with the 
following monthly distribution: May – 33 l/sqm, June – 116 
l/sqm, July – 49 l/sqm, August - 5 l/sqm, September – 8 l/sqm. 
Other climatic parameters such as Precipitation, Leaf 
Wetness, Temperature and Relative Humidity can be seen on 
Fig. 6. 

 

Fig. 6. Results climatic parameters during a week (26.09 – 
02.10.2011) 

 
Another important parameter we studied is the 

accumulation of thermal energy over time, known as degree-
days or heat units. The growth and development of plants, 
insects, and many other invertebrate organisms is largely 
dependent on temperature. In other words, a constant amount 
of thermal energy is required for the growth and development 
of many organisms, but the time period over which that 
thermal energy is accumulated can vary. Many organisms 
slow or stop their growth and development when temperatures 
are above or below threshold levels. Degree-days and other 
heat unit measurements have been used for determination of 
planting dates, prediction of harvest dates, and selection of 
appropriate crop varieties.  

 
Fig. 7. Heat units graphs (daily degree-days and total) 
 
The calculation methods available for heat unit include: 

Averaging, Standard, GDD (Growing Degree-Days), Single 
Triangle, Double Triangle, Single Sine, Double Sine and Near 
Real-Time. As shown in Fig. 7 we used the Averaging 
Method and the maximum heat unit (26,3 degree days) was 
calculated on the date of 10.07.2011 and the total accumulated 
thermal energy by the crop on 01.10.2011 was 3.484,2 degree-
days. 

IV. CONCLUSION 

Our system for environmental telemetry can be adapted 
also to other applications besides agriculture and meteorology. 
Knowing how the weather will be is important but knowing 
how the environmental parameters are right now is just as 
much important for power plants, airports, wind and solar 
parks, incinerators and landfills - they all need wind, 
temperature, radiation data, etc. reliably and up to date. 

Even though IPv6 is used to interconnect processes globally 
on a SlapOS public or private Cloud, we found that some 
existing software on RTUs are incompatible with IPv6. 
Reasons varry. Sometimes, IP addresses are stored in a 
structure of 3 integers, which is incompatible with IPv6. 
Sometimes, IPv6 URLs are not recognized since only dot is 
recognized as a separator in IP addresses. For this reason, we 
decided to provide to each computer partition a dedicated, 
local, non routable IPv4 address. 

We hope in the future that Microsoft Windows will also be 
supported as a host (Microsoft Windows is already supported 
as a guest) through glibc implementation on Windows and a 
port of supervisord to Windows. 

ACKNOWLEDGEMENT 

This paper is presented as part of the project “Valorificarea 
capitalului uman din cercetare prin burse doctorale 
(ValueDoc)” Project co-financed from the European Social 
Fund through POSDRU, financing contract 
POSDRU/107/1.5/S/76909 and part of the project “Cloud 
Consulting” and “TELE GREEN”. 

REFERENCES 

[1] Tokihiro Fukatsu, Tomonari Watanabe, Haoming Hu, Hideo 
Yoichi, Masayuki Hirafuji, “Field monitoring support system 
for the occurrence of Leptocorisa chinensis Dallas (Hemiptera: 
Alydidae) using synthetic attractants, Field Servers, and image 
analysis”, Computers and Electronics in Agriculture, vol. 80, 
January 2012, pp. 8–16, 2012 

[2] Jiang, J.A.; Tseng, C.L.; Lu, F.M.; Yang, E.C.; Wu, Z.S.; Chen, 
C.P.; Lin, S.H.; Lin, K.C.; Liao, C.S., “A GSM-based remote 
wireless automatic monitoring system for field information: A 
case study for ecological monitoring of the oriental fruit fly, 
Bactrocera dorsalis (Hendel)”, Computers and Electronics in 
Agriculture vol. 62, Issue 2, July 2008, pp. 243–259, 2008 

[3] George Suciu, Octavian Fratu, Simona Halunga, Cristian 
George Cernat, Vlad Andrei Poenaru, Victor Suciu, “Cloud 
Consulting: ERP and Communication Application Integration in 
Open Source Cloud Systems”, 19th Telecommunications Forum 
- TELFOR 2011, IEEE Communications Society, pp. 578-581, 
2011 

[4] Heithem Abbes, Christophe C´erin, and Mohamed 
Jemni.Bonjourgrid as a decentralised job scheduler. In APSCC 
08.Proceedings of the 2008 IEEE Asia-Pacific Services 
ComputingConference, pages 89–94,Washington, DC, 
USA,2008. IEEE Computer Society. 

[5] Heithem Abbes, Christophe C´erin, Mohamed Jemni: A 
decentralized and fault-tolerant Desktop Grid system for 
distributed applications. Concurrency and Computation: 
Practice and Experience 22(3): 261-277 (2010) 

I C E S T  2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

276


