

Management of Software Project using Genetic Algorithm
Milena Karova1, Nevena Avramova2, Ivaylo Penev3, Yulka Petkova4

Abstract –This paper presents a heuristic method – genetic
algorithm to solve the Project Management Problem. The
problem is complex, NP complete. The objectives are to minimize
the project duration and to minimize the project cost. The
constraints are that each task must be performed by at least one
person and every person must have a set of knowledge. The
algorithm must define the degree of dedication of each employee.
The Genetic Algorithm (IGAPM) proposes a binary chromosome
encoding, single crossover, two types of selection and flip-bit
mutation.

Keywords – Project Management Problem, Genetic Algorithm,
chromosome, fitness function, project cost, constraints.

I. INTRODUCTION

The software projects consist of interrelated activities with
a set of necessary skills to perform them. The activities should
be performed as much as possible at lower costs and less
overlap utilizing available resources (staff with skills). Project
activities and resources need to be organized in such a way
that the project duration and costs are minimized and the
project quality is maximized.

The presented algorithm uses as instance an implementation
of software project. Project activities steps are: specification
(making specifications according to customer requirements),
programming (individual characteristics), architecture
(defining the system architecture) and interface testing. The
knowledge as a resource that is not quantified a number of
related activities and employees. Any employee involved in
the project implementation has a set of knowledge (skills),
enabling its participation in the project. The project cost
includes the employee’s salaries. These are direct costs.
Indirect costs of a project, such as licenses, rent, equipment
and more are not included in the project.

II. THE PROJECT SCHEDULING PROBLEM

A. Definition of the Project Problem

The software project consisting of five activities Ak, which
are common in projects of this type. The resources to the
project are employee with skills. The links between the
activities are presented in Fig.1.

The skills (knowledge) necessary for the project was
presented as a set: knowledge = {C #, MySQL, PHP,
Network, Design, PMR}. PMR (project management roles) is
the allocation of roles in project management.

Programming
(10)

Interface
(7)

Testing
(5)

Architecture
(8)

Specification
(5)

C#, Php, MySql C#, Design

C#, PMR, Design Network, C#, Php

Php, PMR

Fig. 1. Software Project Activities
Define the project PV = {Ak1, Ak2, Ak3, Ak4, Ak5} [Table

1].

TABLE I
PROJECT ACTIVITIES

Acti
vities

Name
title
iAk

Duration
(days)

t
iAk

Activities
precedents

pred
iAk

Skills
know
iAk

Ak1 Specification 5 no
C#, PMR,

Design

Ak2 Programming 10 Specification
C#, Php,
MySql

Ak3 Architecture 8 Specification
Php,
PMR

Ak4 Interface 7 Programming
C#,

Design

Ak5 Testing 5
Interface,

Architecture
Network,
C#, Php

There is a set of people working on the project PV = {E1,

E2, E3, E4, E5} [Table 2]
The duration of activity tj in the project PV depends on Akj

dedication-part-time percent of employees (which is
dependent on knowledge) [1]. The duration and the other
activities of the project are: t1 = 3, t3 = 4, t4 = 3 and t5 = 2. The
activities supplying on critical path are determined by the

1Milena Karova is with the Department of Computer Science and
Technologies at Technical University of Varna, 1 Studentska str,
Varna 9010, Bulgaria, E-mail: mkarova@ieee.bg.

2Nevena Avramova is a master student with the Department of
Computer Science and Technologies at Technical University of
Varna, 1 Studentska str, Varna 9010, Bulgaria, E-mail:
nevenka@abv.bg

3Ivaylo Penev is with the Department of Computer Science and
Technologies at Technical University of Varna, Email:
ivailopenev@yahoo.com

4 Yulka Petkova is with the Department of Computer Science and
Technologies at Technical University of Varna Email: jppet@abv.bg

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

403

critical path method. For PV project there are: specification,
programming and interface testing.

B. Evaluation Functions

The project duration is determined by the critical path.
Many of the activities involved in the critical path tcr [Eq.1]
denote by CPA (Critical Path Activities) [4].

 ∑
∑∈

=

=
CPAj

Z

i
ij

t
j

cr

m

Ak
t

1

 (1)

TABLE II
PROJECT STAFF

Employee
Name

name
iE

Salary
(leva)

sal
iE

Project
Dedication

(%)
comm
iE

Knowledge
know
iE

Е1
Ivan

Ivanov
1100 100

C#,
MySql,
Php

Е2
Georgi
Vasilev

900 100
Php,
Network

Е3
Gergana

Kancheva
1100 50

Php, PMR,
Design

Е4
Veselin

Georgiev
900 100

Design,
PMR,
Network

Е5
Emilia

Avramova
1000 100 C#, MySql

 crAllpr ttt −= (2)

 ∑
∑=

=

=
A

j
Z

i
ij

t
j

All

m

Ak
t

1

1

 (3)

prprttcrcrM tuSutuOc ∗+∗+∗= coscos (4)

Eq.2 is an overlap time. Eq.3 is the full project duration.

Eq.4 is the fitness function. ucr, ucost and upr are weight
parameters and mij is a employee’s part-time of the project
activities.

III. THE GENETIC ALGORITHM IMPLEMENTATION

A. Algorithm Description

IGAPM (Implementation Genetic Algorithm for Project
Management) is the realization of genetic algorithm for
software project management. The algorithm is a part of a
group planning algorithms and it is defined as a tool for
planning projects (in particular, and software projects). The
application provides the ability to manage projects so that
project will be completed at - short term and / or minimal cost
and with minimal overlapping activities.

IGAPM provides: an interface enabling the user to
implementation of projects and their saving in format XML;
GA management through its basic and additional parameters
to obtain the optimal solution for each run of the GA (the
decision to submit via charts) and removal of most - good
fitness function.

IGAPM application is realized by programming language
C# development environment and Visual Studio. Net 2008.
For plotting graphs is using MS Chart
VisualStudioAddOn.exe. The implementation of the algorithm
realizes the critical path method based on the literature [4].

Fig. 2. IGAPM Interface

B Algorithm Pseudo code

Start
size = size_generation, i = 0
Create a population P (i) based on input data: Knowledge

Employees PV.
Evaluation of the population P (i), using parameters ucr,

ucost and upr.
Repeat while (i <size_generation) or (interrupted by the

user)
Selection (sel, P (i)); result parent_1 and parent_2.
Crossover (parent_1, parent_2); result child_1 and child_2
rnd = random number in the range 0 to 100.
if (rnd > Pm) Mutation (child_1, mut probability) end if
Evaluation child_1 child_2, using parameters ucr, ucost and

upr.
Addition child_1 and child_2 in P (i).
i = i + 1;
Repeat
End
Output at - optimal solution R

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

404

C. Chromosome encoding (matrix presentation)

IGAPM proposes matrix presentation (M) of chromosome.
The value of mij gene is represented by one of eight values
[1], approximately evenly distributed in the interval [0,1]. So
each gene is described by three bits. The meanings of the bits
are examined from left to right. The first bit in the unit ie 100
presented positive value 0.56 in the second bit in the unit ie
010 is positive 0.28, third in a bit that has value 001 is
rounded to 0.16. If one bit is zero, therefore the value that
represents is zero. The binary gene 000 is set to 0 and a gene
with a record 111 is set to 1. Each gene is able to adopt the
following actual values: 0, 0.16, 0.28, 0.44, 0.56, 0.72, 0.84
and 1. These values are approximate percentage of
employee’s project part-time (performance of Ei). Akj activity
and project managers are responsible for employee’s
supervising in the organization. On Fig. 3 it is shown a sample
format of chromosome M.

TABLE III
CHROMOSOME EXAMPLE

M
Spec
ifica
tion

Progra
mmin

g
Architecture Interface Testing

I.Ivanov 0,44 0,84 0,28 0,84 0,84
G.Vasilev 0 0,16 0,84 0 1
G.Kanahe

va
0,16 0,28 0,44 0 0,16

V.Georgi
ev

0,56 0 0,56 1 0,56

E.Avram
ova

0,28 1 0 0,16 0,28

The size of the chromosome can be represented by size | Ak

| * | EW | * 3. IGAPM used chromosome composed of genes
with a record length of size three. Binary record length 3
provides sufficient values to describe the percentage of
employee’s dedication. The binary format allows diverse
describe of employee’s project part-time. The bit increasing
will significantly increase the solving time.

D. Initial Population, Selection, Crossover and Mutation

Creating the initial population:
Start
Size_population = population size
Establish population P(0) by the number of chromosomes

in the population size_population (set by the user interface)
while (size_population! = 0) repeat
Create new chromosome corresponding to any restrictions
Normalization of chromosome
Calculation of fitness function for chromosome OcM
if (one or more activities have assigned staff)
OcM = OcM * 100
end if
The new chromosome is added to P(0)
end repeat
End
Output: population P(0)

The main purpose of selection is to obtain suitable parents
for crossover, to get children with a good fitness function.
IGAPM implementations are realized two methods of
selection, determined by the user interface. Both methods
select two parents for crossover. The methods of selection are:
rank selection and method of "roulette."

For crossover IGAPM uses (two parents and two children)
one - positional crossover (k = 1) that supports the rules for
chromosome’s composing. The probability of crossover is
determined by the user interface.

IGAPM uses a mutation in Invert bit (Flip Bit). In random
it turns one bit of the gene in the chromosome. The mutation
is applied in random order on the chromosome and is applied
for each gene from the choose line. The mutation probability
(Pm) is determined by the user interface.

The last step of each generation is performing update of the
population. IGAPM uses method for removing the poorest
chromosomes. To the next population of children O(I) only
good individuals are transferred. The chromosomes with poor
fitness function are removed [3].

The program is completed by two ways [2]. One is when
the algorithm reaches the maximum number of generations,
set by the user and the second way is forcibly stopped by the
user.

IV. TESTING AND RESULTS

There are a variety of methods for evaluating and
experimenting with the Genetic Algorithms. There is no
uniform methodology for testing and evaluation. Most studies
include subjective evaluations based mainly on tasks that they
solve. The standard approach exists. It analyzes and evaluates
the Genetic Algorithm, changing the following parameters:
number of generations, number of chromosomes in the
population, crossover and mutation probability, type of
selection and improvement of the initial population.

The behavior of the GA is defined on Fig. 5 and Fig.6. For
finite number starts with a constant configuration of genetic
parameters and genetic operators, the variations of the values
of fitness function are relatively constant.

The analysis is based on the different number of GA
generations. Experiments were performed with common
parameters: number of chromosomes in the population = 10,
crossover rate Pc = 0.65, mutation rate Pm = 0.55, weight of
the critical path ucr = 0.95, weight cost ucost = 0.15 and weight
of overlapping activities upr = 0.5. Additional parameter is the
type of selection - by rank.

TABLE IV
RESULTS- NUMBER GENERATIONS/ FITNESS FUNCTION

Generations
Best

fitness
Worst
fitness

Average
fitness

Project
cost

20 17,35 23,75 19,157 1058
150 17,39 26,1 17,801 1065
400 17,11 27,57 17,262 1018
600 17,51 23,52 19,03 1009
1000 17,25 25,05 17,44 1041

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

405

The user interface allows for changing the number of
generations in the interval [1, 1000]. The number of
generations is one of the important factors defining the
duration of algorithm.

Table IV shows that the increasing the number of
generation has limit. The great number of generation couldn’t
improve a good value of fitness function. It depends on the
specificity of current problem (activities’ number, number of
employees and etc.)

Fig. 3 shows the actual duration as result of IGAPM for 20
generations. The project duration is less than the initial (given
duration). The project cost is 1058.

Fig. 3. Given Duration/ The Actual Duration (20 generations)

Fig. 4. Given Duration/ The Actual Duration (600 generations)

Fig. 4 is the graphical view of the best result of Tabl. 4. The

project cost is 1009.
The evolution process of genetic algorithm is shown on

charts Fig.5 and Fig. 6. Genetic algorithm does not allow
increasing of the fitness function. It eliminates bad
chromosomes with higher fitness function. This ensures a
reduction of the fitness function over time.

Fig. 5. Generations/ Fitness function (20 generations)

Fig. 6. Generations/ Fitness function (600 generations)

The Figures show that regardless of the number of
generations the function finds its optimal solution for a small
number of generations and their further increase is not
necessary. The role of mutation or other factors is important in
order to escape the algorithm from local minimum [Fig. 6].

Standard approach to research and evaluate the genetic
algorithm does not exist. There is no exact number of
algorithm executions. The optimal result depends on the
specific task, on use of genetic operators and genetic
parameters and on the number of generations.

The complexity of the algorithm can be calculated by
considering the worst case |Ak| = |Ew|. If n = |Ak| therefore
chromosome has n2 genes. Any operation performed on the
chromosome was assumed to be performed per unit time. If
you refer to s0 population size and number of generations is i.
Complexity is Eq.5.

 






 ∗∑ ns
i

i
O

2 (5)

V. CONCLUSION

Using Genetic Algorithm (GA) for resolving Project
Management Problem is one of the advanced applications of
heuristic algorithms for automation. The GA is a good
decision for resolving the conflicts (resources and costs,
project duration and employee’s knowledge).

The transformation of the actual requirements into
chromosomes is a hard phase and the important factor for GA
success. It has observed that the optimal results can be
achieved if the GA is trained in further.

The future work involves a testing of the algorithm with
various instances to improve the dominance of the project
resources on genetic algorithm evolution process.

REFERENCES

[1] E. Alba, J. Francisco Chicano, Software project management
with Gas, Information Sciences 177, An International Journal,
pp. 2380-2401, 2007

[2] S. Barthelemy, Principe general des algorithmes genetiques,
www.barth.netliberte.org, 2000

[3] H. Sonke, A Self-Adapting Genetic Algorithm for Project
Scheduling under Resource Constraints, Naval Research
Logistics, John Wiley&Sons Inc, pp49:433-448, 2002

[4] http://www.pmipr.org/html/Presentations/ The Critical Path
Method.pdf

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

406

