
P2P WIRELESS NETWORK BASED ON OPEN
SOURCE LINUX ROUTERS

Hristofor Ivanov1 Miroslav Galabov2

Abstract – In this paper we present our work towards
deploying a community wireless network with ad hoc
communication and routing between its elements. We
describe our network model and implementation of
wireless routers, while motivating decisions and pointing
out open issues. The main advantage of our approach is
the low deployment cost and inherent flexibility in terms
of adapting the network configuration with little or no
human intervention, which in turn can be exploited to
support the dynamic addition, removal and mobility of
network elements.

Keywords – Wireless Network, Open Source Firmware, Linux
Routers

I. INTRODUCTION

Algorithm design and evaluation in the field of wireless
networks is performed using network simulators, such as ns-2
and NCTUns [1] [2], in order to systematically investigate
system behavior under different assumptions, operating
conditions and environmental settings. But it is also important
to deploy and experiment with real-world networks. One key
reason is that mathematical tools, even when used in
conjunction with elaborate failure models, have limitations
and cannot capture the full behavior of physical systems, such
as the transmission anomalies in an inhabited area or the
actual performance of commercial hardware. Real
implementation and testing is thus needed to validate
theoretically studied systems. Another, perhaps more
important, motivation is that a testbed can actually be used to
run not only test programs but also real applications. It is
through such application-driven usage that unexpected system
behavior is often discovered or new ideas emerge in terms of
system and application functionality.

The deployment of infrastructure-based wireless networks
has been straightforward and cost-efficient since wireless
access points based on the 802.11a/b/g/n standards have
entered mass production. However, this is not the case for ad
hoc wireless networks given that wireless routers with ad hoc
capabilities are hard to find in the market and are also quite
costly. Another problem is that most such platforms are
proprietary and closed so that is impossible to change internal
settings let alone reprogram the network elements, for
example to install a new routing or power management
algorithm. This has led research groups to the development of
wireless routers and networks based on personal computers
and laptops [3]. While this achieves the desired flexibility in
terms of software development and testing, it restricts the
scope of deployment inside a single building or within an area

of few neighboring buildings. Hence a PC-based network is
not suited for urban environments where an outdoor, rooftop
installation is usually needed to achieve good connectivity. In
turn this poses additional requirements such as size
constraints, weather protection, power supply and
consumption and heat management. Last but not least, using
PCs merely for the purpose of implementing wireless routers
is too costly and would bring any large-scale deployment
effort to a standstill. In this paper we present our work
towards developing a community wireless network which
employs low-cost, off-the-shelf 802.11b/g/n wireless routers
running a custom Linux distribution. The network operates in
ad hoc mode, thereby resulting in great flexibility and reduced
administration. In the next sections, we discuss our
motivation, give an overview of key hardware and software
features of the router platform, present the current
configuration and functionality, and discuss our experiences
so far.

II. MOTIVATION AND REQUIREMENTS

In terms of functionality provided to the end user, we wish to
deploy a wireless network of sufficient scale that will be used
to run applications in a real-world environment outside of the
laboratory. In addition, we wish to augment popular outdoor
areas of the city with wireless connectivity to be exploited by
mobile computers such as laptops and handheld devices.
Besides supporting the typical suite of Internet applications
such as e-mail, telnet, ftp and web browsing, we are interested
in exploring peer-to-peer, groupware and ubiquitous
computing applications. Notably, we do not want to limit
participation only to students and faculty, and are strongly
interested in attracting other communities like schools, local
authorities, or even businesses, perhaps at a later deployment
stage. On another dimension, we aim to create a testbed for
implementing and evaluating algorithms and software, in the
area of networking and distributed systems. Furthermore,
besides using the network as a “dump” data carrier, our desire
is to be able program the network elements in order to control
their operation in a flexible way. We also wish to be able to
install application-specific components, possibly on the fly,
making the network itself an “active” part of the middleware
or application's architecture. We believe that the dual nature
of a “living laboratory” approach where a testbed is also used
by students in their everyday lives will inspire them to
become more actively involved in this area of technology.
From a more practical but nevertheless crucial perspective, we
aim for a simple, open and autonomous participation model
that will encourage our students, but also users from other
communities, to adopt the system. We are looking for an
approach that is easy to implement, setup, manage and extend,

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

435

with as little human intervention as possible; maintenance is
neither something we like to nor can afford to spend many
resources on. At the same time, one has to strike a balance
between performance and flexibility, while keeping the cost of
network deployment low. The latter is particularly important
because we want to adopt a community-driven approach
where each participant covers (at least in part) the costs of
installation. We feel that this is necessary to guarantee
survivability without relying on a constant inflow of funds,
which is hard to achieve in practice, especially in a non-profit
academic environment.

III. NETWORK MODEL

Our approach is illustrated in Figure 1, showing an indicative
configuration that comprises several stationary and mobile
network elements with typical deployment options to support
fixed terminal devices. It is motivated and described in more
detail below. Due to the fact that a large part of the city is
densely built with many tall buildings standing next to each
other, network elements (labeled as ad hoc routers in Figure 1)
must come primarily in the form of stationary devices
installed on roofs and balconies in order to achieve better
connectivity. Their primary role is to provide an IP-plug,
which can be used to connect one or more local client devices
to the rest of the wireless network. At the same time, they may
serve as hot-spots providing IP connectivity to mobile devices
in range. We also wish for mobile devices themselves to serve
as active network elements.

Figure 1. Network Architecture Model

This option can be used to eliminate the need for installing a
stationary network element at home, and so that users may
share part of the network's load even when on the move, if so
desired, in accordance to a true community spirit. It should
also be noted that mobile network elements can be particularly
convenient for conducting on-site experiments of the type
“what will happen if we place a new network element at
location X?” for the purpose of teaching, demonstration,
testing and configuration planning. A pure ad hoc and peer-to-

peer networking approach was chosen to support this
functionality. This is because we wish to be able to add new
network elements without having to reconfigure the ones that
have already been deployed. Even though such changes can
be performed using a combination of remote configuration
tools and scripting, they still require human intervention and
assume that all network elements are up and running during
the update process. Automatic adaptation when network
elements are removed or do not respond is even more
important. Failures are likely to occur occasionally, be it due
to software glitches, hardware problems, power outages, or
people resetting the equipment installed in their homes by
accident. Moreover, in the case of mobile network elements
topology changes are the rule rather than the exception
thereby making manual reconfiguration practically
impossible. In terms of end-user devices (terminals), we
support two options: fixed and mobile terminals. In the first
case, a device such as a personal computer or IP-enabled
appliance connects to the ad hoc wireless network via a local
area network. Several terminals can be connected to the
network in this fashion, via the same network element. In the
second case, a mobile device such as a laptop or handheld
computer connects to the network via an ad hoc wireless
connection to any nearby network element of the system.
Mobile terminals may optionally assume the role of network
elements with routing functionality, thereby enhancing
robustness and increasing the bandwidth of the system. The
distinction between fixed and mobile terminals is at the level
of the IP protocol layer software and transparent for the
applications residing on terminals.

IV. IMPLEMENTATION OF THE AD HOC WIRELESS
ROUTER

The choice of the wireless technology to be used was
“naturally” trivial, with 802.11b/g/n being the only practical
option given its wide industrial adoption, high-speed potential,
and support for both infrastructure and ad hoc operation
modes. But the quest for a suitable router platform proved
somewhat more adventurous. As already mentioned, we desire
a platform that can be programmed, ideally from scratch, in
order to have as much development flexibility as possible. We
also do most of our software development work in the Linux
system environment, the open-source mentality and strong
community support being the main reasons for this preference.
Another restriction was that the device should fit in a
reasonably sized weather-proof container without running into
problems due to low external temperatures or –far more
likely– overheating during summer. With PC platforms being
out of the question due to their high price, big size and
indoors-only deployment scope, our initial approach was to
search for an embedded system board with interfaces that can
be used to add Wi-Fi cards. A similar approach is followed in
other projects, such as the WAND project [7]. We found that
the WRAP Wireless Router Application Platform, designed
by Pascal Dornier (PC Engines GmbH), met our requirements.
Consequently we built a prototype wireless router using a
WRAP board and two Prism 2.5-based Mini PCI wireless
interface cards, running embedded Linux (Figure 2a).

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

436

Figure 2a. WRAP Linux router

Figure 2b. TP-Link TL-WR1043ND Linux router

Figure 2c. LR outdoor installation

Unfortunately, although we were satisfied with its
performance, the overall cost of the package turned up to be
more than what a typical student could afford. Changing our
strategy, we turned our focus on the readily available wireless
products in the market and searched for platforms that would
meet our requirements. We decided for the TP-Link TL-
WR941ND and TL-WR1043ND broadband wireless routers
(Figure 2b), which come with a Linux-based firmware and
source code published under the General Public License. The
TL-WR941ND device (v 2.0) features 4MB Flash memory,
32MB RAM, Atheros AR9132@400MHz, 10/100/1000
Ethernet controllers and an TP-Link TL-SG1008 8 port
10/100/1000 switch. The switched ports are separated into two
different Virtual LANs (vlans), one for the LAN interface of
the router comprising of 4 switched ports, and another
intended for external Internet connectivity (WAN port).
The enhanced TL-WR1043ND version 1.8 features 8MB of
Flash memory, 32MB RAM, Atheros AR9132@400MHz.
Both devices have on-board interfaces for connecting to
indoor or outdoor antennas. Experimentation in the lab with
TL-WR941ND and OpenWRT proved that this particular
hardware/software combination (henceforth referred to as the
LR platform) met our requirements, and was therefore chosen
as a basis for developing our own ad hoc wireless router and
community network. Routing of IP packets in the ad hoc
network is dynamic, as a function of topology changes. We
decided to use the Optimized Link Source Routing (OLSR)
protocol, due to its inherent flexibility, scalability potential
and reduced administration overhead characteristics [4][5].
OLSR is a proactive, table-driven routing protocol based on
the issue of Multipoint Relays (MPRs). It is considered to be
well suited for large and dense networks with low mobility

rates [6]. We tested a number of different solutions to choose
a stable and highly configurable implementation.
The internal router configuration is as follows. The LAN
interface, which is attached to the 5-port switch, is identified
as eth0. The switch separates the ports into two Virtual LANs,
one comprising of 4 ports (LAN segment), and another
assigned to the WAN port. The LAN segment is addressed as
vlan0 while the WAN port is identified as vlan1. Finally, the
Wireless interface is identified as eth1. In the default
configuration, eth1 and vlan0 are bridged together. We
decided to separate these interfaces because we assume that
devices connected to the router's LAN are terminals that do
not (have any reason to) support ad hoc routing. A diagram
that illustrates the router setup approach is shown in Figure 3.

Figure 3. The internal router configuration

V. ADDRESS MANAGEMENT

An important requirement of our network is that routers
should be able to join, quit and reappear, perhaps at another
location, at arbitrary times, without the individual network
elements having to be explicitly reconfigured by an
administrator. At the level of IP, this means that address
assignment and routing should be performed dynamically and
in a location-independent manner.
On switched local area networks, it is possible to
automatically assign IP addresses to a priori unknown hosts
via the Dynamic Host Configuration Protocol (DHCP) [8].
This requires that the DHCP server is reachable in one hop
from the requesting host, which is definitively not the case in
the envisioned network. One solution is to use DHCP relay [9]
to forward requests to a central server. However, this would
make our system fragile as it introduces multiple single points
of failure, namely the server itself plus every ad hoc router
that is used to create the network path between the host and
the server. Decentralized IP address assignment algorithms
have been proposed to address this problem in a distributed
fashion, including [10] [11] [12] [13], yet no implementation
seems to be readily available.
Since we wanted to start the deployment we decided to adopt
a static IP addressing plan, as a temporary and easy to
implement solution. A registry of IP addresses and subnet
addresses was created for the ad hoc network, and each router
is statically assigned an IP address which uniquely identifies it
on the network. Furthermore, each router is given a subnet
network address for 32 IP addresses to be used in the context
of its local LAN. The first address is assigned to the router's
LAN interface, which leaves room for 29 IP-enabled devices
that can be connected to the LAN interface of each router.
Along this scheme, each router features a DHCP server that

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

437

manages a pool of 29 addresses and provides automatic IP
address assignment for the LAN interface, where we also
activated Proxy ARP and IP Forwarding using the proc file
system. Hence devices that connect to a router through the
LAN interface are automatically configured. In turn, OLSR
running on the WLAN (vlan0) interface is configured to
advertise the subnet corresponding to the LAN segment to the
rest of the system.

Figure 4. The Ad Hoc wireless network testbed covering.

VI. CONCLUSION

The network model is kept open so that many different
communities are free to join, contribute to and exploit it.
However this does not imply that all participants should be
allowed to access the same set of services. Public Internet
access, via the University's infrastructure, is a typical
example. Of course, nor should any participant be able to
retrieve account names and passwords transmitted over the ad
hoc network. Security and access control is implemented
using a Virtual Private Networking (VPN) approach. VPN
technologies provide an efficient solution with central control
of user access mechanisms. Our implementation employs the
Point-to-Point Tunneling Protocol (PPTP) [14] with
MPPE128 encryption [15], which is supported by almost
every operating system including those running on most
handheld devices. The VPN server is installed on a dual-CPU
(2400MHz) personal computer with 2048MBs of RAM.
Linux was the operating system of choice and PoPToP was
used as the PPTP server [16]. Measurements performed on the
local network showed a packet encryption/decryption rate of
950Kbytes/sec, which we consider sufficient for the purpose
of initial deployment. The VPN server is equipped with two
Ethernet interfaces. The first interface connects to the
University LAN through which access to the Department's
servers and public Internet is provided. The second interface
connects to the LAN interface (vlan0) of an ad hoc router that
connects the VPN server to the community wireless network.
The network segment between this particular router and the
VPN server was assigned an individual network address and
the OLSR daemon on the router was configured to advertise
the corresponding network address. Using the IP Masquerade
feature provided by the Linux kernel (IP Tables) we
configured the VPN server to perform Network Address
Translation (NAT) between the computers attached to the
VPN and the University network. NAT was necessary since

the IP address pool of the University cannot be used for the
purposes of the ad hoc network for reasons of security and
scalability. With this setup, students and faculty may connect
to and access the University network from any terminal
connected to any ad hoc router. We have successfully tested
Linux, Windows XP/ Vista and Windows 7 PPTP
implementations over the wireless network.

REFERENCES

[1] Lee Breslau et al., “Advances in Network Simulation”. IEEE
Computer, 33 (5), May 2000, pp. 59-67.
[2] S.Y. Wang, C.L. Chou, C.H. Huang, C.C. Hwang, Z.M. Yang,
C.C. Chiou, and C.C. Lin, "The Design and Implementation of the
NCTUns 1.0 Network Simulator", Computer Networks, Vol. 42,
Issue 2, June 2003, pp. 175-197.
[3] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, Robert
Morris, “Link-level Measurements from an 802.11b Mesh Network”,
SIGCOMM 2004, Aug 2004
[4] T. Clausen et al., “Optimized Link State Routing Protocol”, IEEE
INMIC Pakistan, 2001.
[5] T. Clausen, P. Jacquet, “Optimized Link State Routing Protocol
(OLSR)”, Request for Comments 3626 (Experimental), Network
Working Group, Internet Engineering Task Force (IETF).
[6] P. Trakadas et al., “Efficient Routing in PAN and Sensor
Networks”, ACM Mobile Computing and Communications Review
(MC2R), Vol. 8, Num.1, January 2004, pp 6-9.
[7] Stefan Weber, Vinny Cahill, Siobhan Clarke and Mads Haahr.
Wireless Ad Hoc Network for Dublin: A Large-Scale Ad Hoc
Network Test-Bed . E RCIM News, 2003, vol. 54.
[8] R. Droms, “Dynamic Host Configuration Protocol”, Request for
Comments 2131 (Standards Track), Network Working Group,
Internet Engineering Task Force (IETF).
[9] Matthew J. Miller, William D. List, Nitin H. Vaidya, “A Hybrid
Network Implementation to Extend Infrastructure
Reach”, Technical Report, January 2003.
[10] MansoorMihsin and Ravi Prakash, “IP Address Assignment in a
Mobile Ad Hoc Network”, MILCOM 2002.
[11] Nitin H. Vaidya, “Weak Duplicate Address Detection in Mobile
Ad Hoc networks”, Proceedings of 3rd International Symposium on
Mobile Ad Hoc Networking & Computing, 2002.
[12] S. Nesargi and R. Prakash, “MANETconf: Configuration of
hosts in a mobile ad hoc network”, INFOCOM 2002.
[13] C.E. Perkins, E.M. Royer, and S.R. Das, “IP address
autoconfiguration for ad hoc networks”, Internet Draft, IETF
Working Group MANET, (Work in Progress), July 2000.
[14] K. Jamzeh et al., “Point-to-Point Tunneling Protocol (PPTP)”,
Request For Comments 2637 (Informational), Network Working
Group, Internet Engineering Task Force (IETF).
[15] G. Pall, G. Zorn, “Microsoft Point-to-Point Encryption (MPPE)
Protocol”, Request For Comments 3078 (Informational), Network
Working Group, Internet Engineering Task Force (IETF).
[16] PoPToP Project, URL: http://www.poptop.org/

 1 Hristofor Ivanov, St. Cyril and St. Methodius University of
Veliko Turnovo, Veliko Turnovo 5000, Bulgaria,
E-mail:globul@mail.bg
 2 Miroslav Galabov, St. Cyril and St. Methodius University
of Veliko Turnovo, Veliko Turnovo 5000, Bulgaria,
E-mail:lexcom@abv.bg

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

438

http://www.poptop.org/

