

Rapid development of GUI Editor for

Power grid CIM models
Sasa Devic

1
, Lajos Martinovic

2
, Branislav Atlagic

3
, Zvonko Gorecan

4
 and Dragan Tomic

5

Abstract – This paper presents a solution for designing a GUI

editor for power grid CIM models, and a code generator that will

ease the work on developing such editor and rapidly decreases

time needed for development. The work contains basic

description of CIM models and exchange procedure between

clients participating in power trading process. Developed code

generator relies on UML schema contained in a file created by a

designer tool. The approach described here aims power grid

CIM models, but it can be used for other CIM models as well.

The general instructions for developing code generator are given.

At the end, the overall CIM data handling process and resulting

solution are presented.

Keywords – CIM model, GUI Editor, code generating,

interoperability, ICEST 2012.

I. INTRODUCTION

With constant growth of energy consumption and

development of electrical power systems the need for

connecting separate (national) transmission networks into one

synchronous connection was recognized. In order to increase

reliability and security, in 1951 Union for the Co-ordination

of Transmission of Electricity (UCTE) was formed, which

introduced UCTE standard for exchanging electrical network

models between different TSOs (Transmission System

Operator) operators. In order to increase reliability and

security, in 1951 Union for the Co-ordination of Transmission

of Electricity (UCTE) was formed, which introduced UCTE

standard for exchanging electrical network models between

different EMS (Energy Managment System) operators.[1]

But since then, many things have changed. The need to

model data more precise, and to cover electrical elements not

included in UCTE model, such as shunts, generators,

transformer windings, switchers and so on, a new CIM

(Common Information Model) model was developed. In 2009

UCTE became part of ENTSO-E (European Network of

Transmission System Operators for Electricity). ENTSO-E

accepted CIM standard as preferred, and in 2009 first

interoperability (IOP) tests were made, although CIM model

is still in developing phase.

IOP tests are held yearly, during the second week of July in

Brussels, Belgium. Main purposes of IOP tests are joint

testing of developing CIM model, comparison of different

software solutions, promotion and wider application of CIM

as standard. This paper represents one important part of a

product that took part in IOP 2011, where it was well noticed

along side with products from companies like Siemens,

DigSILENT, Cisco, CESI, GE Energy and 10 other

companies. That was its first participation.

Here we will point out that this work is logical continuation

of work presented in [4], and main concepts are derived from

that project.

II. CIM MODEL

A. Basics

CIM is a set of standards for system integration and

information exchange based on a common information model.

CIM is maintained by IEC (The International Electrotechnical

Commission). The part of CIM standards accepted by

ENTSO-E is designed for energy market systems. With

codename iec61970, development is run by IEC TC57 WG13

(Technical Committee 57, Work Group 13). Profile referred to

in this work is for transmission networks – CPSM (Common

Power Systems Model). At the time of writing active version

of the standard is 15.31. Hereinafter, when referring to CIM-

iec61970, profile CPSM, version 15.31, we will say only

CIM.

The purpose of CIM standard is to define how members of

ENTSO-E, using software from different vendors, will

exchange network models as required by the ENTSO-E

business activities. The following basic operations are

sufficient for TSOs to satisfy ENTSO-E network analysis

requirements: export (export internal network model so it can

be unambiguously combined with other TSOs internal models

to make up complete model), import (to import exported

models from other TSOs and combine it to make complete

model), exchange (every sent model must carry the data who

formed it, which data brings and for which use case is

designed for).

B. File structure

ENTSO-E CIM models are packed and exchanged as XML

(Extensible Markup Language) data model. Data division

among files is based on the kind of information in each file.

This division typically divides logical groups and less rapidly

changing information from those changing more frequently.

Therefore, model information exchange is divided into eight

files: Equipment, Equipment Boundary, Topology, Topology

Boundary, State Variables, Dynamics, Diagrams and

1Sasa Devic is with TelventDMS D.O.O, Narodnog Fronta 25A-B,

21000 Novi Sad, Serbia, E-mail: sasa.devic@telventdms.com.
2Lajos Martinovic is with TelventDMS D.O.O, Narodnog Fronta

25A-B, 21000 Novi Sad, Serbia,

E-mail: lajos.martinovic@telventdms.com.
3Branislav Atlagic is with TelventDMS D.O.O, Narodnog Fronta

25A-B, 21000 Novi Sad, Serbia,

E-mail: branislav.atlagic@telventdms.com.
 4Zvonko Gorecan is with TelventDMS D.O.O, Narodnog Fronta

25A-B, 21000 Novi Sad, Serbia,

E-mail: zvonko.gorecan@telventdms.com.
5Dragan Tomic is with TelventDMS D.O.O, Narodnog Fronta

25A-B, 21000 Novi Sad, Serbia,

E-mail: dragan.tomic@telventdms.com.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

467

mailto:sasa.devic@telventdms.com
mailto:lajos.martinovic@telventdms.com
mailto:branislav.atlagic@telventdms.com
mailto:zvonko.gorecan@telventdms.com
mailto:dragan.tomic@telventdms.com

Geographical data. Information from all six files can be

combined into one “complete model”, which joins all data.

Changes on the model are exchanged by difference files that

only contain information what are changed, new and deleted

elements. When difference files are received, changes it

carries are applied to the model.[2]

The CIM model itself is designed with abstract and

concrete classes. Through those classes it maps physics of

electrical power system, its states at the specific time, to the

model. Abstract classes are used to ease the complexity of the

system, they group and define base attributes and associations,

dividing more and less general parts of the system. In contrast

real (concrete) parts of the system are left to be described by

concrete classes, which inherit much of its attributes and

associations from abstract classes. Concrete classes are

dependent on abstract classes. Still, there are concrete classes

that do not inherit any abstract class. Data exchange involves

only concrete classes. As an example Voltage Level class will

be presented (see Fig. 1).

Voltage Level class inherits Equipment Container, as well

as Substation class does. But, there are some attributes and

associations in Voltage Level that do not exist in Substation,

and vice versa. Voltage Level also has an association to Base

Voltage and an aggregation to Substation. However,

Substation doesn't have those connections.

This small part of CIM model is chosen to show the

complexity of the model itself. Other elements of CIM model

have more complicated associations and aggregations which

would be hard to follow.

III. GUI EDITOR DESIGN

In this section we will try to analyze possible GUI design

from designer point of view, with respect to existing solutions

for this problem. As we know, a good GUI interface is an

intuitive one; it reduces learning experience to plain visual

search for commands that resemble verbs of spoken language.

Work area should be well organized. We must keep in mind

that interface is the one that attracts customers into buying a

product, and background solution can only keep them.

Most solutions described in [3], that allow editing of all

classes and fields in CIM model, tend to have display

interface separated into two vertical sections, the left one –

navigation panel, and the right one – details panel. Navigation

panel usually consists of tree view, where root branches are

elements that reference to no other element, their sub branches

are elements referenced to them, and leafs are elements to

which no other element references to. So, following those

rules, elements that reference to multiple elements can be

shown in tree view by their multiple representations (more

than one occurrence). This can cause big confusion with users,

especially considering the fact that elements are represented

by their IDs, which mostly have no mnemonic meaning. We

will also mention that to some elements many elements

reference to, and that can recursively continue resulting in a

tree with large hierarchical depth, which practically means – a

lot of mouse clicking go get to the element that user needs.

Search tool is usually added as additional tab in navigation

panel and increases information density on one place. Details

panel shows attribute details for one selected elements in

navigation panels, where attribute name, type name and value

have separate columns. Details panel is wider then navigation

panel, and therefore it takes central place of application

interface. But, unlike navigation panel, details panel offers

much less information to the user.

We should use navigation panel to show with what types of

elements we can work with, and actual list of elements move

to the center of user’s attention – to details panel. Attribute

values of selected element from the list should be displayed

right under the list, while attribute type should be shown only

as a tool-tip. Navigation panel could be arranged as a tree that

resembles hierarchy of abstract and concrete classes. By doing

so, we will break the complexity of CIM model into logical

groups. With this rearrangement we are able to set users focus

to the center of our application, we have achieved a certain

balance within the application commands, without forcing the

user to specially learn how to use the new interface. Elements

are organized into their logical groups, so looking for what

user needs should not be a problem. A plan for this interface is

presented in Fig. 2.

IV. CODE GENERATING

Now, we have determined what kind of data is exchanged

between different software vendors (CIM XML files) and we

know in what form to present data in our GUI interface. The

piece of the puzzle still missing in our software solution is

how? We need to develop GUI that implements the idea that

we want to realize.

This may sound like a simple task, but if we have to solve

many simple tasks over large amount of different types of

data, our simple problem becomes a big problem. We must

keep in mind that for every field in every class comes around

100 lines of code, and for every class comes around 2.000

lines of code to correctly manipulate with classes and their

Fig. 2: Interface plan

Fig. 1. Voltage Level (object-oriented model)

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

468

fields, to add, update and delete them all with respect to one

another. Knowing that CIM, in version 15, has grown to a

number of 337 classes, of which 222 are concrete and require

a graphical representation, we get the picture how large this

problem really is. If we consider the fact that for IOP 2011,

CIM model was modified almost till the start of tests, our

problem is even bigger. Since requests for changes on the

model increases during last two months before the IOP,

improper development plan could result in unwanted results.

So, as presented in [4]:

The possible solution is to make a new problem, which will

solve our first problem – to write a program that will write a

program that we need.

Situation now is significantly changed. Even though

database is no longer the center of our application, still it is

possible to write a code generator that will write a program

that we need. CIM standard for power grid has been

developing using UML description language, which are

shared though a common file type. This is the key, if we can

programmatically read the file containing CIM diagrams, we

can build a code generator that will write a code that we need!

In this work we will first generate the code, do some

additional changes (if needed), and then compile it with the

rest of application written by hand. Before going into details

of code generation, first let us analyze the existing application

where product of our code generator needs to fit in,

technology in which application is build and possible

technologies for developing code generator.

A. Existing application

Existing application is a desktop client for a WCF web

service, written in C# language, in .Net framework, with use

of WPF graphical subsystem. CIM models are read and sent

from server side to the client side though a web service. We

will concentrate our attention only on client.

Since client side is written in WPF, we will try to explain

its main principles. WPF is presentation system for building

Windows applications with visually stunning user

experiences. Good advantage of WPF is the ability to develop

an application using both markup and code-behind

specifications. Markup, here called Extensible Application

Markup Language (XAML), is used to implement the

appearance of an application; while using managed

programming languages (code-behind) is to implement

behavior, in our case C#. In general this is done to separate

design from behavior, to allow designers to take a larger part

in development process [5]. Therefore, we can conclude that

code generator has to support generating both code-behind

(C#) files and markup (XAML) files. Let us examine possible

technologies for development of such code generator.

B. Possible technologies

For generating code-behind choosing possible technology

was very straight forward. We can write required library by

ourselves, like in [4], or we can use CodeDOM [6], a build in

.Net API for programmatically constructing and compiling C#

source code . General approach is to first construct source

code, save it to a file, use built-in compiler to compile it and

run it. Here, source code will be construct and saved into a

file, and later compiled with the rest of developing

application. This is recommended and fully satisfactory

technology for needs in this project.

For generating markup, XAML code, things are not so

clear, even though XAML is actually one more extension of

XML. All built-in elements that appear in XAML can be

specified though XML. Creating classes that resemble WPF

classes and serializing them to XAML file could really ease

the work for us. But, if we want to design reusable

components that can be used just like system controls, we

should create user controls. User controls can contain other

(user) controls, resources, and animations, just like a WPF

application. For each element from CIM model we need to

create a few user controls that have references to other user

controls, like specified in CIM model.

User control has root XML element with the same name –

UserControl, where XML attribute Class specifies code-

behind class. If user control needs to reference to other user

controls, it needs to have an XML element that represents that

user control, with the name from its Class attribute. This is the

real problem with this approach.

In general we would write new user control by simple

extending base user control class, and adding references to

other already written user controls. But while code generator

is running, we can't declare, initialize and reference to the new

class from some other also new class, whose names we just

read from UML diagram. We could try with constructing a

class for serialization with needed references to some default

user-control-reference class, and override its name before

serialization to the name of a class it actually represents. But

this also won’t fit our needs, because we always have more

than one reference to other classes. Overriding one element

type will override its name wherever it appears. We will end

up with always referencing to the last element that was

overrided.

One more possible solution is to try inventing a new

approach, to write our own, new library that will help us in

generating wanted XAML files...

C. XAML Generator

By analyzing XML structure, which is also XAML

structure, and also WPF structure in whole, we can notice that

it reflects composite design pattern. If we copy WPF design

pattern by using plain classes that have identical hierarchy and

attributes, with simple overriding ToString method and saving

the output to a file, we can get the result we need. Each class

will print XAML code that corresponds to WPF class it

represents. Printing all attribute values that differ from their

default values, will also be included. Of course, like in WPF,

all attributes are inherited from base to derived classes. Plain

class that represent user control will have additional method

called GenerateReferenceCall, for simple solution of problem

we had with setting references in standard XML approach,

explained in previous subsection.

The beauty of this solution is its simplicity and ease of use.

Library that implements ideas here presented will allow us to

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

469

generate code for our application like if we wrote it by hand.

That library we will call XAML Generator.

Since code-behind and markup are basically inseparable in

WPF, to join the two libraries, CodeDOM and XAML

Generator, we will generate both simultaneously. Functions

that handle user events are defined in code-behind and called

from markup. In that way view and controls are linked. In

listing 1 we can see an example class from XAML Generator.

The possible drawback is the fact that WPF is rather large

subsystem of .NET, and writing generator to allow us full

support for it would be very demanding. But this is not a real

problem, at first, we will have support to generate only a small

part of WPF, and gradually, as we progress in building our

application, we will expand XAML Generator to fit our needs.

D. Implementation

After defining what we want user to see, navigation and

details view, how to develop our code generator, CodeDOM

and XAML Generator, we have left easy part to do – to

generate code architecture to suite our needs.

By using UMLReader component, we will read the meta-

data from the UML file, and use it in GUI code generator.

This component was already developed as part of another

project, and it won’t be analyzed here. We will only mention

that, like in [4], meat-data is stored into class model from

which is easier to read classes names, attributes and relations

among them. When meta-data is read into the memory, that

will be meta-meta-data.

Navigator component we have already discussed in section

III. Here we will only mention that this component is realized

by knowing all the classes in CIM model, their names and

their base classes.

Details View components will be separated into tree logical

sections: tables, selectors and views components.

Tables are used to display a list of one type of CIM

elements, where their attributes are shown in columns. Those

are the simplest components. Search by criteria is also

available for every attribute of string type.

Selectors relay on tables. They are used to select one

element from a list of elements of certain type. This will be

very useful for setting associations and aggregations among

different CIM elements.

Views relay on both tables and selectors. They allow

creating new element for the model, modifying and deleting

existing elements selected in tables list. For setting

associations and aggregations, selector components are used.

View components are the most complex of all, because they

take care of new, modified and deleted elements, storing them

into three separated list for sending to the server side.

This code generator is designed to cover some of specific

needs of ENTSO-E CIM model, but it can be applied for other

CIM and UML models as well. Appearance of produced CIM

GUI editor is given in Fig. 3. Sum of all generated lines of

code, for 220 concrete tables, is 355,997 lines.

Development process is presented in Fig. 4.

V. CONCLUSION

In this work we have explained what CIM models are, and

how they are exchanged. We designed more user friendly

graphical interface. Code generator is described, for both

code-behind and markup specifications. Solving problems

with code generators allows us to develop applications much

faster, with fewer errors and with less people on the project.

The most important advantage of code generating is that it

allows us to easily adopt our application on future (frequent)

change requests, which is becoming a major obstacle for any

large application.

REFERENCES

[1] D. Kirschen, G. Štrbac “Fundamentals of Power System

Economics“, 2005.

[2] ENTSO-E, “UCTE CIM Model Exchange”, component

interface exchange, revision 1.0, version 14, 2009.

[3] ENTSO-E, “Interoperability test: CIM for System Development

and Operations – Final Report”, 2010.

[4] S. Devic, B. Atlagic, Z. Gorecan, “Database modelling and

development of code generator for handling power grid CIM

models”, ICEST, 2011.

[5] Ted Hu, “WPF Series Getting Started”, Microsoft MSDN, 2010.

[6] Luke Hoban, “C# 3.0 and CodeDOM”, Microsoft MSDN, 2007.

Fig. 4: Development process

Fig. 3: Produced CIM GUI Editor

public class XButton : XButtonBase{
 public XButton(){}
 public override string ToString(){
 // print XAML element
 String atts = GetAttributeValues();
 String startElement = "<Button"+atts+">\n";
 String body = generateContent();
 String endElement = "</Button>\n";
 return startElement + body + endElement; }
}

Listing 1: Example class from XAML Generator

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

470

