

Building an 8085 Microprocessor Module
for the HADES Simulation Framework

Goce Dokoski1, Dimitar Bojchev2 and Aristotel Tentov3

Abstract – The Hamburg Design System (HADES) is a popular
framework for running interactive digital logic simulations. It
has a modular architecture written in the Java programming
language that makes it ideal for modelling complex digital logic
circuits and therefore processor architectures. Given that there
are very few HADES processor modules publicly available today,
we have started developing our owns.

This paper focuses on the process of building a HADES
processor module, by using the classic Intel's 8085 processor as
an example. Some emphasizes on the use of Java threads and its
synchronization mechanisms is made, in order to show how the
concurrent circuitry of the 8085 internal architecture is
modelled.

Finally, it presents the prospects for flexible simulations and
analyses of processor systems in HADES.

Keywords–microprocessor, 8085, module, HADES, simulation.

I. INTRODUCTION

HADES is a popular framework for running interactive
simulations of digital logic circuits[1]. It has a graphical editor
that provides a convenient method for modelling digital logic
systems. For example, it allows a simulation to be run at the
same time its design is implemented as well as show all signal
waveforms (wires, pins etc.) on timing diagrams. This makes
it suitable for flexible and precise design analysis.

A HADES design usually consists of several digital
components interconnected by wires. Its basic building blocks
are the boolean logic gates (AND, OR, NOT, etc.), but a large
number of more complex components is also available. This
includes various latches, flip-flops, registers, timers,
multiplexers, decoders, FSA as well as many other models of
ROM and RAM memories, bus controllers, peripherals etc.
Few processor cores are also available: Intel i4004, Microjava
2 and PIC16C84.

One design can be easily saved as a module and reused in
another design as a “sub-design”. This is especially important
for the hierarchical nature of digital designs. However, there is

another alternative when it comes to modelling very complex
digital systems, such as complete processor architectures.
HADES provides a JAVA programming API that can be used
to define custom made logic blocks. Having in mind the vast
number of Java libraries available today, one gets practically
unlimited number of possibilities for simulation.

When it comes to building a HADES model, the
programmer only needs to define and present the input/output
pins to the rest of the design. Afterwards he can read or write
their values, and have the rest of the system modelled in any
way. For example, in the case of a processor architecture, it
can be defined either instruction- or cycle- accurately.

The module is a separate Java class that can use any
additional software, including Java wrappers for other
programming languages and libraries. It can also
communicate with hardware components, so it becomes easy
to interface the module to devices outside the HADES design
in a fully co-simulation environment.

This paper will present the modelling of the classic Intel's
8085 processor as a HADES model. There are several 8085
simulators currently available, most of which are free and
open-source [4,5,6]. However, all of these simulators are
stand-alone applications that lack the possibility of
interconnecting with other components and devices. This is a
major disadvantage as it limits them to assembler testing only.

The HADES model presented in this paper is built on top of
one of the existing 8085 simulators – the J8085 simulator
written in Java. As the source code was available for non-
commercial purposes, we used it as a base and added the
necessary interface so that it can function as a HADES
component. This way a complete working model of the
processor is accomplished.

The rest of this paper is organized as follows: the second
section gives an overview of the HADES simulation
framework and API. In section 3 a short introduction to the
8085 instruction set architecture is given. Section 4 deals with
the interfacing of the 8085 HADES module with the J8085
simulator. It emphasises the Java threading mechanisms used
to model the concurrent behaviour of the processor. Finally
the fifth section gives a conclusion and summarizes the pros
and cons of the model.

II. THE HADES SIMULATION
FRAMEWORK

A. Overview

As shown in figure 1, a simulation consists of a hierarchy
of design objects [1]. Only one of them is a top-level design
object, and it manages the other design objects.

1Goce Dokoski, Faculty of Electrical Engineering and Information
Technologies at the University “Ss. Cyril and Methodious” of
Skopje, bul. Krste Misirkov bb, Skopje 1000, R.Macedonia, E-mail:
gocedoko@feit.ukim.edu.mk.

2Dimitar Bojchev, Faculty of Electrical Engineering and
Information Technologies at the University “Ss. Cyril and
Methodious” of Skopje, bul. Krste Misirkov bb, Skopje 1000,
R.Macedonia, E-mail: dime@feit.ukim.edu.mk.

3Aristotel Tentov, Faculty of Electrical Engineering and
Information Technologies at the University “Ss. Cyril and
Methodious” of Skopje, bul. Krste Misirkov bb, Skopje 1000,
R.Macedonia, E-mail: toto@feit.ukim.edu.mk.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

471

The communication among the components is made by a

simulation kernel that transfers SimEvent objects among the
design objects.

Fig. 1. Overview of the HADES simulation framework as

described in the HADES tutorial [1]

 The SimEvents carry information on how the wire values
chage over time – one SimEvent object carries the new value
of a wire that should take place at a given time instant. The
wire values can be of the IEEE1164 standard types [2].

B. Component Symbol Description

A component in HADES is a subclass of the SimObject
class. In order to design a custom component model, the
SimObject class needs to be sub-classed to the custom
component class and afterwards only two methods must be
overriden:

 elaborate() - does the initialization of the

component. It is called at the loading and
preparation of the HADES design for simulation;

 evaluate() - contains the full behavioral model of
the component. It is called every time there is a
pending SimEvent object, for ex. one or more of its
input pins have changed their value.

From here it is easy to recognize the discrete nature of the

behavioral model and the simulation: everything that needs to
be done in order to model a discrete dynamic system is to
program the state changes of the component as a result of its
input pins' changes.

C. Component Symbol Description

In order to use a component in the graphical user interface
of HADES, a graphical representation needs to be defined as
well. This is done in a textual (.sym) file where the number of
pins, their names and their position in the graphical
representation is specified.

There is also a possibility to define a dynamic graphical
representation, for example to maintain visual representation
of the internal state and registers in the graphical symbol.
However, this is not currently covered.

III. THE 8085 INSTRUCTION SET ARCHITECTURE

The 8085 microprocessor is one of the predecessors of the
famous Intel's x86 architecture. It is a CISC architecture, that
can execute a set of instructions grouped in 5 functional
subsets, as described in its reference manual[3]:

 Data Transfer – each instruction moves a byte or a

(2 byte) word between a register, register pair,
memory or I/O location;

 Arithmetic Operations – contains instructions that
perform addition, subtraction, incrementation and
decrementation on data in register, register pair or
memory location;

 Logic Operations – contains instructions that
perform the boolean operations on data in register,
register pair or memory location;

 Branch Group – performing conditional or
unconditional branching in the execution flow;

 Stack, I/O and Machine Control Group –
instructions that maintain the stack, communicate
with I/O devices, and work with interrupt masks and
flags.

All instructions execute for at least one and up to five

machine cycles, where each machine cycle lasts from three to
six clock cycles.

A machine cycle resembles one READ or WRITE
operation on a memory or I/O location. It can also serve as an
INTR interrupt acknowledge cycle, or leave the bus idle, in
case it is in a HOLD state, or if it executes an instruction that
doesn't need communication with peripheral devices or
memory.

Every instruction may be 1, 2 or 3 bytes long, so in order to
fetch it, its execution will last at least 1, 2 or 3 memory READ
machine cycles, correspondingly. Afterwards, depending on
its functionality, it will activate additional READ/WRITE
machine cycles. This happens in case it needs communication
with a memory or I/O device, (for example an instruction of
the Data Transfer group).

.

IV. THE 8085 HADES MODULE

A. Definition and Initialization

First, the 8085 component symbol definition is specified.
All component pins are entered as they are specified in the
reference manual[3]. Figure 2 shows the graphical
representation as the component will appear in the HADES
simulation.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

472

The elaborate() method is the most appropriate place to

instantiate the J8085 simulator's main class, and to call its
main function. This sets its internal state to the initial values,
as when the simulator is started or the simulation reset. A
reference to the simulator object is kept as a member variable
in the SimObject component class, for convinient access to its
functionalities.

Some of the component's pins are also set to their intial
state: The AD0-7, A8-15 and all input pins are set to high-
impedance state so that they can be driven by other devices.

An enumerated variable is added to the class, to keep the
state of the processor, and it's initialized to the first state of a
READ operation, so that the model is ready to fetch the first
instruction.

B. Implementation of the Evaluate() Method

The rest of the functionality is implemented in the
evaluate() method. As mentioned previously, this method is
called whenever any input pin changes value.

Currently the progress of the instruction execution is
conducted by the CLK_IN signal. It is sufficient to provide
sequence of pulses to the CLK_IN pin, because the program
execution inside the evaluate() function, only checks for a
falling edge on the CLK_IN pin. The X1 and X2 pins' original
purpose is to provide a clock sequence to the processor by
using signals from a crystal oscillator, but this is not currently
supported. At the beginning of the function it is safe to set the
CLK_OUT pin to follow the CLK_IN.

The nRST_IN signal is also checked on every evaluate()
call. If a low (0) level signal is detected, all of the processor's
output pins are reset to their initial values, and the simulator
object's execution is reset. The simulator object already
included public methods for pausing, resuming and resetting
the processor execution, so the reset method is called as well.

Another important step in the processor reset is to cancel
the current READ/WRITE operation if any is currently
executed. This is explained later in the text.

The next step is to check for the falling edge of the
CLK_IN input and progress the instruction execution such as
the current READ/WRITE operation.

If the machine cycle is the last one of the current
instruction, the interrupt pins are also checked. The J8085
simulator object provides public procedures that trigger
handling of the hardware interrupts, so these functions are
called in this case. This procedures were originally used with
the GUI buttons of the J8085 simulator, but now they are
reused to handle the events of the HADES interrupt pins.

C. Interfacing with the J8085 Simulator Object

The J8085 Simulator is a stand-alone Java application with
its own GUI that displays the processor's registers, flags and
memory state. The whole project consists of several classes,
the most important of which are shown in Table 1, together
with their functions.

TABLE 1
THE MOST IMPORTANT J8085 SIMULATOR CLASSES

MainFrame Contains the GUI and all the
interfacing with the Executer
class

Executer The behavioural model of the
processor. It fetches op-codes,
manages the execution flow and
READ/WRITE operations

Memory This class simulates the 8085's
64 KB memory space as an array
of 64K Strings that keep the byte
values in hex format.
It contains methods for memory
read/write operations that use
this array.

Ports Class that provides methods for
READ/WRITE operations over
the 255 I/O locations (ports).
The port values are alse kept as a
String array.

The most important part of the 8085 model execution was
to replace the methods of the Memory and Ports classes so
that they use the HADES memory and I/O space instead of the
internally simulated ones.

For this purpose, we added special methods to the HADES
8085 model, that perform the READ/WRITE cycles on the
multiplexed address/data bus. So instead of using the strings
array, the read/write methods of the Memory class, are
changed to call the appropriate methods of the HADES 8085
model. This is also the case with the Ports class.

The methods that perform the memory and I/O
READ/WRITE operations, have access to all the necessary
pins (ALE, nRD, nWR, AD0-7, A8-15, etc). They receive the
memory or I/O address as arguments, and receive or return the
data that needs to be accordingly read or written.

Fig. 2. The graphical representation of the 8085 HADES
module

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

473

The only problem that arises is that the functions need to

wait for several clock signals in order to drive the pins
properly. These methods will be called from the J8085
simulator, and executed in a separate thread. They should
execute one state, and wait for a falling edge on the CLK_IN
before proceeding with the next one.

In order to efficiently wait for the next falling edge of the
CLK_IN signal, without wasting processor time in a loop, the
function executes the Java sleep() procedure, which puts it to
idle state, until someone calls notify().

In Java a process may call a sleep() function but it needs to
specify an object on which it will sleep. Afterwards, any other
method that has access to that object, may call notify() on it,
which in turn will resume any methods that have called
sleep(). The object itself may be ay subclass of the Java
Object type.

Whenever the evaluate() method detects the falling edge it
will notify() the object on which the READ/WRITE function
sleeps, so it will be able continue executing the next machine
cycle state. The low level of RST_IN may also trigger a
notify(), because when resetting the simulator, the function
must not stay in the sleep() state.

Some precaution is needed, because it may happen that
several threads notify() a same object, which may result in
unpredictable situations. For example, the RST_IN signal may
notify the sleeping object simultaneously with the CLK_IN
edge. This is easy to resolve - all notify() calls to the object
need to be locked on that object, to prevent them from
executing concurrently.

D. Compilation and Transfer of the Compiled Code
into External Memory

The J8085 simulator has an internal parser and compiler
that write the compiled code to its internal memory. In order
to transfer the compiled code to external HADES memory
component, we added additional option in the GUI menu that
exports the compiled machine code to a .rom file.

This file is in a format that allows it to be imported to the
standard HADES memory components (ROM and RAM).

As the simulator currently reads the first instruction from
the first address of its memory space (0), the memory
component that contains the compiled code, should have its
chip-select activated on this address.

V. CONCLUSION

In this paper we showed how to build a HADES simulation
object that models the behavior of the Intel 8085 processor
architecture. We used an existing open source 8085 simulator
written in Java, and adjusted its interface to the HADES
simulation model.

Instead of letting the GUI maintain the interrupts, memory
and I/O ports, the model uses the HADES component pins to
communicate with the rest of the HADES design, thus
providing a powerful and realistic simulation environment for
testing and analyzes of microprocessor systems.

The HADES framework and its Simulation API provide
almost unlimited possibilities when it comes to component
design, and having in mind their open source availability, their
use should be increased in both academic as well as
professional system development areas.

 This discrete simulation model is sufficient to model and
simulate any kind of digital logic on the gate level, or above.

The only limit may be seen in the continuous-space
problems, although custom-made components that work with
continuous signals may also be easily written in Java.

REFERENCES

[1] Norman Handrich, “HADES tutorial”, University of Hamburg,
2006

[2] "IEEE Standard Multivalue Logic System for VHDL Model
Interoperability (Stdlogic1164)," IEEE Std 1164-1993, 1993

[3] MCS-85 User's Manual, Intel Corporation, 1976
[4] 8085Simulator, http://8085simulator.codeplex.com/
[5] GnuSim8085, http://gnusim8085.org/
[6] J8085 Simulator, http://sourceforge.net/projects/j8085sim/

S.Haykin, Neural Networks, New York, IEEE Press, 1994.
[7] Karola Krönert, Ullrich Dallmann: JavaFSM - Animation und

Simulation von Mealy- und Moore-Schaltwerken. Studienarbeit
(ps.gz) (Mai 1997)

[8] Norman Hendrich: From CMOS-Gates to Computer
Architecture: Lessons Learned from Five Years of Java-Applets.
Proceedings of the 4th European Workshop on Microelectronics
Education, EWME 2002, Baiona, 23-24 May 2002

[9] Norman Hendrich: A Java-based Framework for Simulation
and Teaching, Proceedings of the 3rd European Workshop on
Microelectronics Education, EWME 2000, Aix en Provence,
France, 18-19 May 2000, Kluwer Academic Publishers

[10] Norman Hendrich: HADES: The Hamburg Design System,
ASA'98, European Academic Software Award/Alt-C
Conference, Oxford, 19-21 Sep. 1998

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

474

