

Аlgorithms for scheduling of resource-constrained jobs
Ivaylo Penev1, Milena Karova2

Abstract – The paper presents two heuristic algorithms for
scheduling resource constrained jobs in an environment,
consisting of identical connected computers. The first algorithm
uses sorted list of jobs and is applicable to the particular case
when the number of jobs is not greater than the number of
available computers. For the general case of the problem with
arbitrary number of jobs and computers a genetic algorithm is
proposed. The experimental results present comparison of
solutions, obtained by the algorithms, performed on test data sets
with the exact solutions, produced by a classical branch and
bound algorithm.

Keywords – job-scheduling, resource constraints, heuristics,
genetic algorithm.

I. INTRODUCTION

The goal of the resource-constrained job-scheduling
problem is constructing a schedule with starting moments for
each job on an available computer from the environment, such
that preliminary defined limiting criteria are satisfied and
extreme value (minimum or maximum) of objective function
is achieved.

The following common approaches and algorithms for
solving the resource-constrained job-scheduling problem are
known.

- Algorithms for producing exact solution;
The most frequently used exact method is the branch and

bound algorithm. The algorithm performs exhaustive check of
all branches of a tree with possible solutions (i.e. all possible
schedules). For reducing the space of solutions the tree is
usually pruned by the usage of a bound value for the
examined branch.

The results of many realizations of the branch and bound
algorithm are published, for example for solving the resource
constrained project scheduling problem [1].

- Algorithms for producing good (near the
exact) solution;

Most scheduling problems are NP-hard [2]. For finding
good solution, which is close to the exact one, heuristic
approaches and algorithms are applied. Multiple heuristic
rules and algorithms for solving scheduling problems are
suggested, summarized for example in [3]. Genetic algorithms
are among the most often algorithms used. A genetic
algorithm, solving common resource-constrained scheduling
problem is presented for example in [5].

The paper presents two heuristic algorithms for scheduling
of resource-constrained jobs. The first algorithm is based on
sorted lists of jobs. The second one is genetic algorithm. The
solutions, obtained by these algorithms are compared to the
exact solution, produced by classical branch and bound
algorithm. The authors demonstrate, that the proposed
heuristic algorithms produce near the exact solutions for
significantly reduced time.

II. FORMAL DESCRIPTION OF THE RESOURCE-
CONSTRAINED JOB-SCHEDULING PROBLEM

The resource-constrained job-scheduling problem could be
formally defined by the following sets.

1. Jobs
J = {j i | i≤ n} - set of jobs
j i = {v i, qi, wi} – set of sub jobs for each job

vi – reading data from common resource
qi – calculation operations
wi – storing results into the common resource
t(vi), t(qi), t(wi) – completion time for each sub job of job ji
Ci – completion time of job ji

2. Resources
Sub jobs vi and wi uses common resource. Sub job vi

requires r(vi) units and sub job wi requires r(wi) units of the
common resource.

3. Temporal constraints
S = {Si | i≤ n } – set of starting moments along the

time axis for each job

S(vi) = {S(vi) | i≤ n } – set of starting moments for
sub job vi

S(qi) = {S(qi) | i≤ n } – set of starting moments for
sub job qi

S(wi) = {S(wi) | i≤ n } - set of starting moments for
sub job wi.

The sub jobs of each job are performed in the following
order – reading data, calculation operations, storing data, i.e.

j i J Si → (Si + t(vi) ≤ S(qi)) ∩ (S(qi) + t(qi) ≤ S(wi))
The completion time of each job (which means completion

of all sub jobs) in a schedule is defined as Ci = S(wi) + t(wi).
The completion time of the last job in a schedule is Cmax =
max(Ci) and is called makespan.

4. Mathematical model of the resource-
constrained job-scheduling problem

Assuming the above notations the problem for scheduling n
jobs in an environment of m identical connected computers,
using constrained common resource could be formally
described:

min(Cmax), i = 1, …, n – minimum makespan - objective
function (1)

1Ivaylo Penev is with the Department of Computer Sciences and
Technologies at Technical University - Varna, 1 Studentska str.,
Varna 9000, Bulgaria, E-mail: ivailopenev@yahoo.com.

2Milena Karova is with the Department of Computer Sciences and
Technologies at Technical University - Varna, Bulgaria.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

475

(Si + t(vi) ≤ S(qi)) ∩ (S(qi) + t(qi) ≤ S(wi)) - temporal
constraints (2)

∑
=

n

i 1
(r(vi) U r(wi)) ≤ 1 – resource constraints (3)

A feasible solution of the scheduling problem is assignment
of starting moments to all sub jobs, i.e. (S(v1), S(q1), S(w1), …,
S(vn), S(qn), S(wn)), which satisfies the temporal constraints
(2) and the resource constraints (3). The exact solution is the
minimum value of all possible values of the completion time
of the last job in the schedule, i.e. the exact solution
guarantees minimum makespan Cmax in the schedule.

III. HEURISTIC ALGORITHMS FOR SOLVING THE

RESOURCE-CONSTRAINED JOB-SCHEDULING

PROBLEM

A. Algorithm with sorted lists of jobs for the particular case
n ≤ m of the resource-constrained scheduling problem

The algorithm uses two lists with jobs. It is presented by the
following pseudo code:

List1 � ji, for ∀i<j → t(vi) + t(qi) ≥ t(vj) + t(qj)
S1 = 0
for each job in List1 do
 Si = Si-1 + t(vi-1)
endfor
List2 � List1, for ∀i<j →Si + t(vi) + t(qi) ≤ Sj + t(vj) +

t(qj)
S1 = 0
j1 � List2 – Get first job from List2
t1 = S1 + t(v1) + t(q1) + t(w1)
for each job in List2 do
 if Si+t(vi)+t(qi)>=Si-1+t(vi-1)+t(qi-1)+t(wi-1)
 ti = Si+t(vi)+t(qi)+t(wi)
 else
 begin
 ∆t(wi) = ti-1 – (Si + t(vi) + t(qi))
 ti = Si + t(vi) + t(qi) + ∆t(wi) + t(wi)
 end
 endif
endfor
j � Get last job from List2
Cmax = j

B. Genetic algorithm for the general case n ≤ m of the

resource-constrained scheduling problem
The genetic algorithm iteratively chooses the best

candidates (individuals) of a set of possible solutions. The
choice is based on the calculation of an objective function of
the genetic algorithm, which presents the number of time
units, in which two or more jobs access the common resource
concurrently. At each iteration the algorithm shifts an
arbitrary job on the time axis and calculates the objective
function. If the shifting decreases the objective function’s
value, the solution is saved in the population.

B. 1. Distribution of the tasks between the computers

To assign jobs to a computer a list with the jobs, sorted by
execution time is used (i.e. t(vi) + t(qi) + t(wi)). Each job from
the list is afterwards assigned to a computer. After the first m
jobs are assigned to m computers, the assignment of jobs
continues in reverse order.

Fig. 1. Distribution of jobs between the computers

B.2. Coding of the chromosomes
Each chromosome presents a list with all available

computers. Each computer is assigned to a job with starting
moment and known times for reading data, calculation
operations and storing results.

Fig. 2.Structure of the genetic algorithm

Each chromosome is presented as a string. Each element of

the string is coded with one of two possible values – 0 or 1.
The time units, in which the job uses the common resource is
presented with 1, the others are presented with 0.

Fig. 3. Structure of a chromosome

B.3. Objective function of the genetic algorithm
The objective function of the chromosome is calculated by

intersection of the strings of each pair of computers from the
chromosome. The number of “1”-s is added to the sum of time
units with concurrent access to the constrained resource.

Algorithm for calculating the objective function’s value of
the genetic algorithm:

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

476

foreach chromosome
 sum_of_time_units_with_concurrent_access = 0
 for i = 1 to m-1
 for j = i + 1 to m
 result_string = stringi ∩ stringj
 sum_of_time_units_with_concurrent_access =

sum_of_time_units_with_concurrent_access + number of “1”-
s in result_string

 endfor
 endfor
end foreach

B.4. Genetic operators
Mutation is performed by choosing an arbitrary job from an

arbitrary computer of the chromosome. The job is then shifted
on the time axis. The objective function is calculated. If the
number of time units with concurrent access to the common
resource is decreased, the shifted job is saved in the
population.

IV. EXPERIMENTAL RESULTS

The branch and bound algorithm and the two presented
algorithms are tested for constructing schedules with different
number of jobs. Times for reading data, calculation operations
and storing results for each job are generated. For each
number of jobs 100 attempts are performed. The minimum
makespan of the schedule and the necessary time for
constructing the schedule are measured.

Table I shows the deviation of the makespans, produced by
the algorithm with sorting and the genetic algorithm from the
corresponding exact makespan, obtained by the classical
branch and bound algorithm. The deviations are measured in
percents.

TABLE I

DEVIATIONS OF THE HEURISTIC ALGORITHMS’ MAKESPANS FROM THE

BRANCH AND BOUND’S MAKESPAN

Number of

jobs
Sorting (%) Genetic algorithm

(%)
2 0 0
3 0,74 0,95
4 1,92 3,07
5 1,19 0,89

Table II shows comparison of the average time, necessary

to the algorithms to produce the makespan. The following
notations are used:

BB – Branch and bound algorithm
Sorting – Algorithm with sorting
GA – Genetic algorithm

TABLE II

COMPARISON OF TIMES FOR PRODUCING THE MAKESPAN
Jobs BB (ms) Sorting (ms) GA (ms)

3 3 3,29 23,10

4 63,85 2,68 288,67

5 305,67 2,85 275,56

7 11437 2,15 6645

8 110554 6,69 880

9 6459285,35 65545 10880

The next figures demonstrate the trend of the time,

necessary to all the algorithms for constructing the schedule
with the minimum makespan for different number of jobs.

Fig. 4. Trend of time, necessary to the branch and bound algorithm

for producing exact minimum makespan

Fig. 5. Trend of time, necessary to the algorithm with sorting and
the genetic algorithm for producing near the exact minimum

makespan

V. CONCLUSIONS

The experimental results prove, that both the proposed
algorithms produce near the exact minimum makespan of the
constructed schedule. The algorithm with sorted lists of jobs is
very easy to implement and produce makespan for
significantly reduced time in comparison with the branch and

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

477

bound algorithm. The genetic algorithm constructs schedule
for least time in comparison with the other algorithms and is
applicable to the general case of the scheduling problem with
arbitrary number of jobs and identical connected computers.

The presented algorithms will be used in a real portfolio
management system for evaluation of various financial
objects’ risk. Simulation analyses must be performed with
historical data of portfolios. Typically there are no data
dependencies between the data of the portfolios, which makes
possible parallel execution of the estimations. The historical
data are stored into common resource. The concurrent access
to the common resource decreases the efficiency of the
parallel execution [4]. The proposed heuristic algorithms will
be used to construct schedule with jobs, estimating portfolios,
which ensures completing of all jobs for polynomial time.

REFERENCES

[1] Dorndorf, U., W. Pesch, T. Phan-Huy. A Time-Oriented
Branch-and-Bound Algorithm for Resource-Constrained Project
Scheduling with Generalised Precedence Constraints.

[2] Garey, M., D. Johnson. Computers and intractability: A Guide
to the Theory of NP-Completeness. Freeman. 1979.

[3] Hartmann, S., D. Briskorn. A survey of variants and extensions
of the resource-constrained project scheduling problem.
European Journal of Operational Research, vol. 207, iss. 1, pp. 1
– 14, 2010.

[4] Penev, I. Realization of Portfolio Management System in a
Distributed Computing Environment. Proceeings of Fifth
International Scientific Conference Computer Science’2009,
ISBN: 978-954-438-853-9, pp. 291 ÷ 296.

[5] Wall, M., B., A Genetic Algorithm for Resource-Constrained
Scheduling, partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Mechanical Engineering,
Massachusetts Institute of Technology, 1996.

I C E S T 2012 28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

478

