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Abstract – The paper presents two heuristic algorithms for 
scheduling resource constrained jobs in an environment, 
consisting of identical connected computers. The first algorithm 
uses sorted list of jobs and is applicable to the particular case 
when the number of jobs is not greater than the number of 
available computers. For the general case of the problem with 
arbitrary number of jobs and computers a genetic algorithm is 
proposed. The experimental results present comparison of 
solutions, obtained by the algorithms, performed on test data sets 
with the exact solutions, produced by a classical branch and 
bound algorithm. 
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I. INTRODUCTION 

The goal of the resource-constrained job-scheduling 
problem is  constructing a schedule with starting moments for 
each job on an available computer from the environment, such 
that preliminary defined limiting criteria are satisfied and 
extreme value (minimum or maximum) of objective function 
is achieved. 

The following common approaches and algorithms for 
solving the resource-constrained job-scheduling problem are 
known. 

- Algorithms for producing exact solution; 
The most frequently used exact method is the branch and 

bound algorithm. The algorithm performs exhaustive check of 
all branches of a tree with possible solutions (i.e. all possible 
schedules). For reducing the space of solutions the tree is 
usually pruned by the usage of a bound value for the 
examined branch. 

The results of many realizations of the branch and bound 
algorithm are published, for example for solving the resource 
constrained project scheduling problem [1]. 

- Algorithms for producing good (near the 
exact) solution; 

Most scheduling problems are NP-hard [2]. For finding 
good solution, which is close to the exact one, heuristic 
approaches and algorithms are applied. Multiple heuristic 
rules and algorithms for solving scheduling problems are 
suggested, summarized for example in [3]. Genetic algorithms 
are among the most often algorithms used. A genetic 
algorithm, solving common resource-constrained scheduling 
problem is presented for example in [5]. 

The paper presents two heuristic algorithms for scheduling 
of resource-constrained jobs. The first algorithm is based on 
sorted lists of jobs. The second one is genetic algorithm. The 
solutions, obtained by these algorithms are compared to the 
exact solution, produced by classical branch and bound 
algorithm. The authors demonstrate, that the proposed 
heuristic algorithms produce near the exact solutions for 
significantly reduced time. 

II.  FORMAL DESCRIPTION OF THE RESOURCE-
CONSTRAINED JOB-SCHEDULING PROBLEM 

The resource-constrained job-scheduling problem could be 
formally defined by the following sets. 

1. Jobs 
J = {j i | i≤ n} - set of jobs 
j i = {v i, qi, wi} – set of sub jobs for each job 

vi – reading data from common resource 
qi – calculation operations 
wi – storing results into the common resource 
t(vi), t(qi), t(wi) – completion time for each sub job of job ji 
Ci – completion time of job ji 

2. Resources 
Sub jobs vi and wi uses common resource. Sub job  vi 

requires r(vi) units and sub job wi requires r(wi) units of the 
common resource. 

3. Temporal constraints 
S = {Si | i≤ n } – set of starting moments along the 

time axis for each job 

S(vi) = {S(vi) | i≤ n } – set of starting moments for 
sub job vi  

S(qi) = {S(qi) | i≤ n } – set of starting moments for 
sub job qi 

S(wi) = {S(wi) | i≤ n } - set of starting moments for 
sub job wi. 

The sub jobs of each job are performed in the following 
order – reading data, calculation operations, storing data, i.e. 

j i J  Si → (Si + t(vi) ≤ S(qi)) ∩ (S(qi) + t(qi) ≤ S(wi)) 
The completion time of each job (which means completion 

of all sub jobs) in a schedule is defined as Ci = S(wi) + t(wi). 
The completion time of the last job in a schedule is Cmax = 
max(Ci) and is called makespan. 

4. Mathematical model of the resource-
constrained job-scheduling problem 

Assuming the above notations the problem for scheduling n 
jobs in an environment of m identical connected computers, 
using constrained common resource could be formally 
described: 

min(Cmax), i = 1, …, n – minimum makespan - objective 
function        (1) 
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(Si + t(vi) ≤ S(qi)) ∩ (S(qi) + t(qi) ≤ S(wi)) - temporal 
constraints (2) 

∑
=

n

i 1
(r(vi) U  r(wi)) ≤ 1 – resource constraints      (3) 

A feasible solution of the scheduling problem is assignment 
of starting moments to all sub jobs, i.e. (S(v1), S(q1), S(w1), …, 
S(vn), S(qn), S(wn)), which satisfies the temporal constraints 
(2) and the resource constraints (3). The exact solution is the 
minimum value of all possible values of the completion time 
of the last job in the schedule, i.e. the exact solution 
guarantees minimum makespan Cmax in the schedule. 

III.  HEURISTIC ALGORITHMS FOR SOLVING THE 

RESOURCE-CONSTRAINED JOB-SCHEDULING 

PROBLEM 

A. Algorithm with sorted lists of jobs for the particular case 
n ≤ m of the resource-constrained scheduling problem 

The algorithm uses two lists with jobs. It is presented by the 
following pseudo code: 

 
List1 � ji, for ∀i<j → t(vi) + t(qi) ≥ t(vj) + t(qj) 
S1 = 0 
for each job in List1 do 
 Si = Si-1 + t(vi-1) 
endfor 
List2 � List1, for ∀i<j →Si + t(vi) + t(qi) ≤ Sj + t(vj) + 

t(qj) 
S1 = 0 
j1 � List2 – Get first job from List2 
t1 = S1 + t(v1) + t(q1) + t(w1) 
for  each job in List2 do 
 if Si+t(vi)+t(qi)>=Si-1+t(vi-1)+t(qi-1)+t(wi-1) 
  ti = Si+t(vi)+t(qi)+t(wi) 
 else 
  begin 
   ∆t(wi) = ti-1 – (Si + t(vi) + t(qi)) 
   ti = Si + t(vi) + t(qi) + ∆t(wi) + t(wi) 
  end 
 endif 
endfor 
j � Get last job from List2 
Cmax = j 
 
B. Genetic algorithm for the general case n ≤ m of the 

resource-constrained scheduling problem 
The genetic algorithm iteratively chooses the best 

candidates (individuals) of a set of possible solutions. The 
choice is based on the calculation of an objective function of 
the genetic algorithm, which presents the number of time 
units, in which two or more jobs access the common resource 
concurrently. At each iteration the algorithm shifts an 
arbitrary job on the time axis and calculates the objective 
function. If the shifting decreases the objective function’s 
value, the solution is saved in the population. 

B. 1. Distribution of the tasks between the computers 

To assign jobs to a computer a list with the jobs, sorted by 
execution time is used (i.e. t(vi) + t(qi) + t(wi)). Each job from 
the list is afterwards assigned to a computer. After the first m 
jobs are assigned to m computers, the assignment of jobs 
continues in reverse order. 

 

 
Fig. 1. Distribution of jobs between the computers 

 
B.2. Coding of the chromosomes 
Each chromosome presents a list with all available 

computers. Each computer is assigned to a job with starting 
moment and known times for reading data, calculation 
operations and storing results. 

 

 
Fig. 2.Structure of the genetic algorithm 

 
Each chromosome is presented as a string. Each element of 

the string is coded with one of two possible values – 0 or 1. 
The time units, in which the job uses the common resource is 
presented with 1, the others are presented with 0. 

 

 
Fig. 3. Structure of a chromosome 

 
B.3. Objective function of the genetic algorithm 
The objective function of the chromosome is calculated by 

intersection of the strings of each pair of computers from the 
chromosome. The number of “1”-s is added to the sum of time 
units with concurrent access to the constrained resource. 

Algorithm for calculating the objective function’s value of 
the genetic algorithm: 
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foreach chromosome 
  sum_of_time_units_with_concurrent_access = 0 
  for i = 1 to m-1 
    for j = i + 1 to m 
      result_string = stringi ∩ stringj 
      sum_of_time_units_with_concurrent_access = 

sum_of_time_units_with_concurrent_access + number of “1”-
s in result_string 

    endfor 
  endfor 
end foreach 
 
B.4. Genetic operators 
Mutation is performed by choosing an arbitrary job from an 

arbitrary computer of the chromosome. The job is then shifted 
on the time axis. The objective function is calculated. If the 
number of time units with concurrent access to the common 
resource is decreased, the shifted job is saved in the 
population. 

IV.  EXPERIMENTAL RESULTS 

The branch and bound algorithm and the two presented 
algorithms are tested for constructing schedules with different 
number of jobs. Times for reading data, calculation operations 
and storing results for each job are generated. For each 
number of jobs 100 attempts are performed. The minimum 
makespan of the schedule and the necessary time for 
constructing the schedule are measured. 

Table I shows the deviation of the makespans, produced by 
the algorithm with sorting and the genetic algorithm from the 
corresponding exact makespan, obtained by the classical 
branch and bound algorithm. The deviations are measured in 
percents. 

TABLE I 

DEVIATIONS OF THE HEURISTIC ALGORITHMS’  MAKESPANS FROM THE 

BRANCH AND BOUND’S MAKESPAN 
 
Number of 

jobs 
Sorting (%) Genetic algorithm 

(%) 
2 0 0 
3 0,74 0,95 
4 1,92 3,07 
5 1,19 0,89 
   
 
Table II shows comparison of the average time, necessary 

to the algorithms to produce the makespan. The following 
notations are used: 

BB – Branch and bound algorithm 
Sorting – Algorithm with sorting 
GA – Genetic algorithm 
 
 
 
 

TABLE II 

COMPARISON OF TIMES FOR PRODUCING THE MAKESPAN 
Jobs BB (ms) Sorting (ms) GA (ms) 

3 3 3,29 23,10 

4 63,85 2,68 288,67 

5 305,67 2,85 275,56 

7 11437 2,15 6645 

8 110554 6,69 880 

9 6459285,35 65545 10880 

 
The next figures demonstrate the trend of the time, 

necessary to all the algorithms for constructing the schedule 
with the minimum makespan for different number of jobs. 
 

 
Fig. 4. Trend of time, necessary to the branch and bound algorithm 

for producing exact minimum makespan 
 

 
Fig. 5. Trend of time, necessary to the algorithm with sorting and 
the genetic algorithm for producing near the exact minimum 

makespan 

V. CONCLUSIONS 

The experimental results prove, that both the proposed 
algorithms produce near the exact minimum makespan of the 
constructed schedule. The algorithm with sorted lists of jobs is 
very easy to implement and produce makespan for 
significantly reduced time in comparison with the branch and 
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bound algorithm. The genetic algorithm constructs schedule 
for least time in comparison with the other algorithms and is 
applicable to the general case of the scheduling problem with 
arbitrary number of jobs and identical connected computers. 

The presented algorithms will be used in a real portfolio 
management system for evaluation of various financial 
objects’ risk. Simulation analyses must be performed with 
historical data of portfolios. Typically there are no data 
dependencies between the data of the portfolios, which makes 
possible parallel execution of the estimations. The historical 
data are stored into common resource. The concurrent access 
to the common resource decreases the efficiency of the 
parallel execution [4]. The proposed heuristic algorithms will 
be used to construct schedule with jobs, estimating portfolios, 
which ensures completing of all jobs for polynomial time. 
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