DLadder - an Integrated Environment for Programming PIC Microcontrollers

Viša Tasić¹, Dragan R.Milivojević², Vladimir Despotović³, Darko Brodić⁴,

Marijana Pavlov⁵ and Vladan Miljković⁶

Abstract – DLadder is a new integrated development environment designed for programming the Microchip PIC microcontrollers. It allows programming using ladder logic, interpretation and compilation of programs into PIC16 and PIC18 native code. Debugger and the real-time simulation are also included, which allows displaying the contents of a microcontroller ports and memory locations in the real-time. Furthermore, the state of the I/O ports and A/D conversion results can be memorized in the database. Benefit of this development environment is the easy way of 'visual' programming in low level code. This paper describes briefly some elements of DLadder development environment.

Keywords - microcontroller, programming, ladder, software

I. INTRODUCTION

Ladder diagram represents a program in ladder logic. Ladder logic is a programming language that represents a program by a graphical diagram based on the circuit diagrams of relay logic hardware. When a programmable logic controller (PLC) is used primarily to replace relays, timers, and counters, it's hard to beat the simplicity and usefulness of ladder diagram programming [1]. The name is based on the observation that programs in this language resemble ladders, with two vertical rails and a series of horizontal rungs between them. The logic in a ladder diagram typically flows from left to right. The diagram can be divided into sections called rungs as shown in Fig. 1.

¹ Viša Tasić is with the Institute of Mining and Metallurgy, Department of Industrial Informatics, Zeleni bulevar 35, 19210 Bor, Serbia, e-mail: <u>visa.tasic@irmbor.co.rs</u>,

² Dragan R. Milivojević is with the Institute of Mining and Metallurgy, Department of Industrial Informatics, Zeleni bulevar 35, 19210 Bor, Serbia, e-mail: <u>dragan.milivojevic@irmbor.co.rs</u>,

³ Vladimir Despotović is with the University of Belgrade, Technical Faculty in Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia, e-mail: <u>vdespotovic@tf.bor.ac.rs</u>,

⁴ Darko Brodić is with the University of Belgrade, Technical Faculty in Bor, Vojske Jugoslavije 12, 19210 Bor, Serbia, e-mail: <u>dbrodic@tf.bor.ac.rs</u>,

⁵ Marijana Pavlov is with the Institute of Mining and Metallurgy, Department of Industrial Informatics, Zeleni bulevar 35, 19210 Bor, Serbia, e-mail: <u>marijana.pavlov@irmbor.co.rs</u>

⁶ Vladan Miljković is with the Institute of Mining and Metallurgy, Department of Informatics, Zeleni bulevar 35, 19210 Bor, Serbia, e-mail: <u>visa.tasic@irmbor.co.rs</u> Each rung typically consists of a combination of input instructions. These instructions lead to a single output instruction; however, rungs containing function block instructions may be more complicated.

Ladder logic has contacts that make or break circuits to control coils. Each coil or contact corresponds to the status of a single bit in the programmable controller's memory. Unlike electromechanical relays, a ladder program can refer any number of times to the status of a single bit, equivalent to a relay with an indefinitely large number of contacts. So-called "contacts" may refer to physical inputs to the programmable controller from physical devices such as pushbuttons and limit switches via an integrated or external input module, or may represent the status of internal storage bits which may be generated elsewhere in the program.

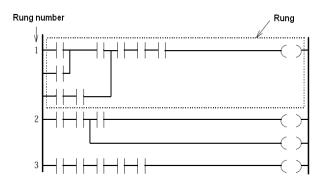


Fig. 1. The basic elements of the ladder diagram

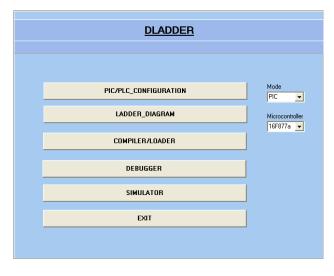


Fig. 2. DLadder main window

Ladder notation is best suited to control problems where binary variables are only required and interlocking and sequencing of binary are the primary control problems. Analog quantities and arithmetical operations are not suitable to express in ladder logic and each manufacturer has different ways of extending the notation for these problems. As microprocessors have become more powerful, notations such as sequential function charts and function block diagrams can replace ladder logic for some limited applications. Very large programmable controllers may have all or part of the programming carried out in a dialect that resembles BASIC or C or other programming language with bindings appropriate for a real-time application environment.

II. DLADDER INTEGRATED DEVELOPMENT ENVIRONMENT (IDE)

DLadder is a new integrated development environment (IDE) developed in Borland Delphi 7, and designed for certain Microchip PIC microcontrollers [2], mainly for the purpose of development of applications for control and data acquisition of industrial processes. It allows programming using ladder logic, and compilation of programs into PIC16 and PIC18 native code. However, the PIC microcontroller with this software is able to perform the PLC functions, by some additional features and predefining functional blocks. A PLC is a modular device programmable by using ladder diagrams. It internally uses a microcontroller to handle all input, output and logic scans.

DLadder allows writing programs for microcontroller basic configuration only, or for expanded configurations with a number of additional new input or output modules. Debugger and the real-time simulator are also designed, which allows displaying the state of a microcontroller ports and contents of memory locations in the real-time. Thus, DLadder offers an easy way of 'visual' programming in low level code. DLadder's main window is shown in Fig. 2. It consists of several modules that will be briefly described below.

The main difference between PLC and microcontrollers is only the way of programming. Therefore, in the very beginning the mode of operation (basic configuration – PIC mode; expanded configuration – PLC mode) should be selected. Afterwards, parameters of the PIC/PLC_CONFIGURATION are configured based on the selected mode, as shown in Fig. 3.

A. Ladder Diagram Editor

The option LADDER_DIAGRAM opens the editor for drawing ladder diagrams. Writing a ladder diagram is performed by selecting the required elements from the object toolbar (shown in Fig. 4) and setting them in the appropriate position on the screen. Each window in ladder editor consists of eight rows and 11 columns. The last column in each row is reserved for placing the coils and function objects.

The function objects supporting the arithmetic operations, logic operations, etc. Most objects do not require any special settings. However, it is necessary to enter the memory location to which the object is referenced. An example of a simple ladder program simulating the operation of the traffic lights (semaphore) is shown in Fig. 4. An appropriate electric wiring diagram for the given case realized with the PIC16F877A microcontroller [3] is given in Fig. 5.

figuration							
			PIC/PLC_CO	NFIGURATION			
Out_00	Inp_11	Out_02	Slot_3	Slot_4	Slot_5	Slot_6	Slot_7
C Input	Input	C Input	C Input	C Input	C Input	C Input	Input
C Output	Output	C Output	C Output	C Output	C Output	C Output	Output
C A/D	A/D	C A/D	C A/D	C A/D	C A/D	C A/D	A/D
C Spec	Spec	C Spec	C Spec	C Spec	C Spec	C Spec	Spec
C N	N	C N	C N	C N	C N	C N	N
Slot_8	Slot_9	Slot_10	Slot_11	Slot_12	Slot_13	Slot_14	Slot_15
C Input	C Input	C Input	C Input	C Input	C Input	C Input	C Input
C Output	C Output	C Output	C Output	C Output	C Output	C Output	C Output
C A/D	C A/D	C A/D	C A/D	C A/D	C A/D	C A/D	C A/D
C Spec	C Spec	C Spec	C Spec	C Spec	C Spec	C Spec	C Spec
C N	C N	C N	C N	C N	C N	C N	C N
Slot_16	Slot_17	Slot_18	Slot19	Slot_20	Slot_21	Slot_22	Slot_23
C Input	C Input	C Input	C Input	C Input	C Input	C Input	C Input
C Output	C Dutput	C Output	C Dutput	C Dutput	C Dutput	C Output	C Dutput
C A/D	C A/D	C A/D	C A/D	C A/D	C A/D	C A/D	C A/D
C Spec	C Spec	C Spec	C Spec	C Spec	C Spec	C Spec	C Spec
C N	C N	C N	C N	C N	C N	C N	C N
Slot_24	Slot_25	Slot_26	Slot_27	Slot_28	Slot_29	Slot_30	Slot_31
C Input	C Input	C Input	C Input	C Input	C Input	C Input	C Input
C Output	C Output	C Output	C Output	C Dutput	C Output	C Output	C Output
C A/D	C A/D	C A/D	C A/D	C A/D	C A/D	C A/D	C A/D
C Spec	C Spec	C Spec	C Spec	C Spec	C Spec	C Spec	C Spec
C N	C N	C N	C N	C N	C N	C N	C N
						Save	Exit

Fig. 3. The PIC/PLC configuration window

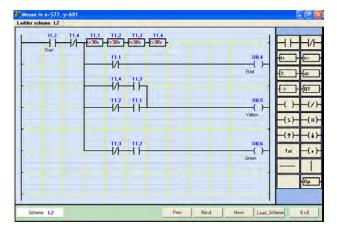


Fig. 4. The ladder diagram created in DLadder editor

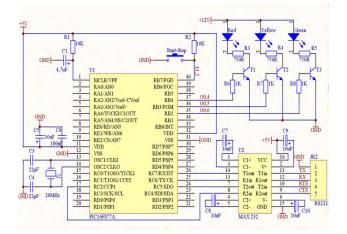


Fig. 5. The semaphore electric scheme realized with the microcontroller PIC16F877A

-		*1		#2		*3		*4		ж5	×	6	×7		#B		ex		٨	яH			-
4	11.00		sl.10		sL20		1.30		L40	sU:	50	s1.60	-	1.70		180	al	.90	ILAI		H	H	H/
H		101		1201		i301	-	i401		501	i60	1	i701	1	801	it	01	iAi	н		b	1	-
1	1L01		sL11		1L21		1.31	١.	L41	11	51	1L61		1.71	sl	1.81	sl	.91	sLA			-	
		112		1212		1312		412		12	161	2	1712	- 1	812	R	12	IAI	2		-1:	1	a)
2	sL02		sL12		s1.22		1.32	4.	1.42	aL	52	s1.62		sL72	- 1	82	al	.92	ILA:	2		7-	QT
		123		1223		1323		423	3	523	i62	3	1723		023	8	23	in	13				-
4	sL03		+1.13		#L23	-	1.33	4.	1.43	-	53	s1.63	-	sL73	=	183	st	.93	TLA:		H	F	El,
		134		1234		334	i	434		534	i63	4	1734		834	i	134	iA:	4		-()	s)-	-()
4	1L04		1.14		1L24		1.34	μ,	1.44	11.	54	:L64		1L74	- 1	184	=1	.94	ILA	-		t)-	-
		145		1245		1345	-	445		545	164	5	1745		845	R	45	iA	15			0	- 1.
5	1L05		sL15		#L25	4	1.35	μ,	L45	sL!	55	s1.65		L75	-	1.85	ei	.95	ILA:	5 -	T	R\$	-(,
		1156		1256		1356	1	456	1	556	165	6	1756		856	1	56	iAs	6			-	1
6	s1.06		sL16		41.26	-	1.36		1.46	- 11	56	s1.66	-	sL76		186	- 11	.96	sLA			-	i i
		157		1257		i357	,	457	1	557	165	7	1757	d	857	1	57	iAE	7			1	Op
4	s1.07		sL17		sL 27	1	1.37	ь,	1.47	:1.	57	s1.67	1	:177	si	1.87	=	.97	ILA	-			

Fig. 6. The fields in DLadder database associated to the first screen of the ladder diagram

Larger ladder diagrams consist of several windows. At the bottom of the editor window there are buttons for scrolling through the ladder diagram windows, for opening of a new diagram or closing the editor. The existed ladder diagram can be loaded and modified by inserting or deleting some objects.

B. DLadder Compiler/Loader

Each ladder diagram is stored in the database as a series of symbols. The database records the position of each object on the ladder diagram, as well as their interrelations. List of fields in the database with their positions on the ladder diagram is shown in Fig. 6. The source code of the program, whether it is written in assembler or other programming language (C, Pascal, and ladder) has to be translated into machine language of the microcontroller. As a result of this operation an object file will be created in hexadecimal format (*. hex), which carries a series microcontroller instructions. Hence, in order to be ready for loading into the PIC microcontroller the ladder diagrams must be compiled and stored into the hex files in the prescribed form. Microchip has published a protocol for transmission of hex file into internal program memory of microcontrollers. An example of the structure of hex file is shown in Fig. 7.

🗾 Lad	der - Note	epad						
File Edi	t Format	View	Help					
:10000 :10002 :10002 :10002 :10002 :10000 :10000 :10000 :10000 :10000 :10000 :10000	00040000 0000810 0000810 0000810 0000810 0000810 0000810 0000810 0000810 0000810 0000810 00008110 000000120 000000120 00000010 00000010 00000000	20317 20313 20718 20718 20718 20718 20718 20218 20218 2020 20208 2	8312 4028 881D F813 FD0C FE00 FC0A 4A28 FC1D 7C1E 8312 031D 031D DE01 A20A A60A	8818102 081E272 F913FC1 8819FD1 FC1D3A2 7C1A871 FD0C881 5128FD(01297D(01297D(0129D0(101A30(101AA3(1118A7(280819 28FC19 28FC19 28FC19 28FC19 287E18 287E18 287E18 287C1A 287C1A 287C1A 288000 288000 288000 288000 288000 288000 288000 200000 200000 200000 2000000	5928F 1C28F F80C8 501298 F0137 50100 8810F F0178 8715F 50180 55080 400A1 440A1	E289C 90CDB 81955 71138 00838 E1C3E E1C3E 81C3E	
<)		>

Fig. 7. The structure of the hex file prepared for programming the PIC microcontroller

28-30 JUNE, 2012, VELIKO TARNOVO, BULGARIA

A	BrB	Shi Looka	Adey	BA	*	Sh Sh	sAmeCod	uAd-Byt	1B	Hest	ad (BriCod	×
•	1	2 and	11	2		D	bet	Wa	0	1074	01000001110100	
	0	2 andc	71	4			2.bc/	PORTD	5	1288	01001010001000	
		2 sto	L.	0		6	2(bd)	PORTD	6	1308	01001100001000	
П.	0	2.06	1	0			2 bcf	PORTB	3	1186	01000110000110	
Π.		2.00	Lb	5			2.bd	PORTB	4	1206	01001000000110	
Τ.	0	2 and	Lb	5		1	2 bc/	POINTB	5	1206	01001010000110	
		2 sto	Bs	0		-	2' dH	Conti.		01A0	00000110100000	
Т.	6	2 and	30		-		2 movt	00	0	0830	00100000110000	
		2 364/	11:1				2 moved	W/D		00A7	00000010100111	
	0	2 and	Tml	1			2/bd	PORTC	5	1607	01011010000111	
1		2 110	Bs	0		1	2 call	SERIDUR		2187	10000110000111	
	6	2 00	30				2 but	PORTD	5	1288	01001010001000	
		Z slow	11z.2				2/bcf	PORTD	5	1308	01001100001000	
	0	2 md	38				2 bd	PORTB	3	1186	01000110000110	
		2 stoly	T1z_2				2 /bc/	PORTE	4	1206	01001000000110	
	0	2 and	Tent	2			2/bol	PORTE	5	1686	0101101000110	
		2 10	54	0		П	2 off	ContL		01A0	00000110100000	
1	0	Z and.	30			E	2 olt	W/0		01A7	00000110100111	
1		2 waw	T11_7				2 64	SERInp		217C	10000101111100	
1	2	2 and	Lb	5		П	2 movil	WB	0	0827	00100000100111	
	1	2 milt:	TI	4		Π	2 introd	ft.		0081	000000101100001	
Т.	0	2 and	111	3	-		2 bd	PORTD	5	1286	01001010001000	

Fig. 8. DLadder's compiler/loader window

The option COMPILER/LOADER in DLadder main window opens compiler/loader window (shown in Fig. 8). Compiling of the ladder diagram starts after pressing the *Compile* button. The compilation of the ladder diagram is executed from left to right. The result of the compilation process is the code written into hex file. In a special case, when the PIC microcontroller on the development board is connected to PC, it is possible to program the microcontroller directly from DLadder. In such a case, by pressing the *Programming* button, the latter compiled program will be immediately loaded into the PIC microcontroller. DLadder uses both the USB and serial connection for file transfer, monitoring and control of the PIC program execution.

C. DLadder Debugger/Simulator

Once the code has been built and checked from the syntax point of view, it needs to be tested. Debugging is a process of finding and reducing the number of errors in a computer program. In order to test the code, we need some kind of software or hardware that will execute the PIC micro instructions [5].

DLladder's integrated debugger uses the internal in-circuit debug hardware of the target Flash PIC microcontroller to run and test the application program. When DEBUGGER option is selected in the main window, the application code is programmed into the PIC microcontroller's memory. A small "debug executive" program is loaded into the high area of program memory. Since the debug executive must reside in program memory, the application program must not use this reserved space.

The debug executive runs just like an application in program memory. It uses some locations on the hardware stack and file registers for its temporary variables. Special "incircuit debug" registers in the target microcontroller are enabled. These allow the debug executive to be activated by the DLadder. The target microcontroller is held in reset by keeping the VPP/MCLR line low. DLadder will raise the VPP/MCLR line to allow the target microcontroller to run, starting from address zero and execute until the program counter reaches the breakpoint address previously stored in the internal debug registers.

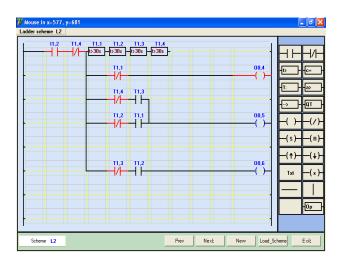


Fig. 9. DLadder debugger window

After the instruction at the breakpoint address is executed, the in-circuit debug mechanism transfers the program counter to the debug executive (much like an interrupt) and the user's application is effectively halted. DLadder IDE communicates with the debug executive via PGC and PGD lines [6, 7], gets the breakpoint status information and sends it back to the DLadder IDE. The DLadder IDE then sends a series of queries to get information about file register contents and the state of the CPU. These queries are ultimately performed by the debug executive.

Based on the described principle it is possible to monitor the status of certain elements of ladder diagram. The program appears on screen with the energized (true) branches highlighted (red color), as shown in Fig. 9, which makes it easy to debug.

The simulator is a software program that runs on the PC to simulate the state of input instructions of the PIC microcontrollers. When SIMULATOR option is selected in the main window, it allows monitoring of ladder diagram and changing (forcing) state of inputs during the program execution.

CONCLUSION

The primary motive for developing DLadder IDE is a desire to facilitate program writing for PIC microcontrollers using the concept of visual programming. Although there are a number of development environments for PIC microcontrollers on the market, not many of them allow writing the programs in ladder logic. DLadder IDE, which is still in the stage of continuous development, is shown to be reliable and easy-to-use. Thus, we believe that DLadder environment can be a useful tool for programming the PIC microcontrollers.

ACKNOWLEDGEMENT

This work was supported by Ministry of Education and Science of the Republic of Serbia under Project TR33037 "Development and Application of Distributed System for Monitoring and Control of Electrical Energy Consumption for Large Consumers".

REFERENCES

- [1] W. Bolton, *Programmable Logic Controllers*, Fifth Edition, Newnes, 2009.
- [2] M. Verle, PIC microcontrollers Programming in C, Belgrade, Serbia, mikroElektronika, 2009. (in Serbian) http://www.mikroe.com/eng/chapters/view/14/chapter-1-worldof-microcontrollers/#c1v4
- [3] Microchip Inc., *PIC16F87XA Datasheet* (10/31/2003) http://www.microchip.com/wwwproducts/Devices.aspx?dDocN ame=en010242
- [4] V. Milanović, *PC Interfaces*, Lazarevac, Serbia, Elvod Print, 2005. (in Serbian)
- [5] M. Verle, *PIC microcontrollers*, Belgrade, Serbia, mikroElektronika, 2007. (in Serbian)
- [6] Microchip Inc., PIC16F87XA Data Sheet 28/40-pin Enhanced FLASH Microcontrollers, Microchip Technology Inc., 2003. www.datasheetcatalog.org/datasheets2/41/4109312_1.pdf
- [7] Microchip Inc., MPLAB ICD 2 In-Circuit Debugger User's Guide, Microchip Technology Inc., 2005. http://ww1.microchip.com/downloads/en/devicedoc/51331b.pdf