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Abstract – In this paper we present an approach for sleep 
spindles identification in human EEG. This approach is planned 
to be involved in a new automatic system for assessment of sleep 
staging. The sleep spindles are extracted from the EEG 
background using EMD and their envelope is found with 
morphological filtering. The main decision stage is based on 
adaptive thresholding. The proposed approach is validated and 
evaluated with real EEG signals. 
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I. INTRODUCTION 

The sleep spindles are specific transient activities in the 
human electroencephalogram (EEG) which occur mainly in 
sleep stage 2 in Non-Rapid Eye Movement (NREM) sleep [1]. 
Their presence in the signal is one of very few features used 
for recognition of sleep stage 2 [2]. The sleep spindles occupy 
the frequency region from 12 to 15Hz. In most cases they 
appear in consequence with k-complexes as a single burst 
(Fig. 1) or as a burst train. Their positive and negative 
envelopes are relatively symmetrical, but there is a large 
variety of possible morphologies. Nevertheless, most of the 
researchers consider waxing and waning trends in the 
oscillations [1]. 

 

Fig. 1. A typical sleep spindle and a k-complex seen in sleep stage 2 

The most common approach for sleep spindles 
identification is preprocessing with band-pass filter [3]. Some 
authors use the wavelet decomposition-reconstruction as a key 
stage for uncovering the sleep spindles from background 
activity [4]. The suggested approach is simple and probably 

fast, but we believe that the frequency band from 8-16Hz is 
too wide for this purpose. 

In this paper we describe a new approach combining the 
Empirical Mode Decomposition (EMD) for sleep spindles 
uncovering and morphological filtering for envelope 
detection. The potential of this approach is the possibility for 
precise detection of onsets and offsets of the wanted 
transients. Also the simplified envelope is very convenient for 
extraction of some other kind of features for achieving a better 
recognition rate. 

In section II is described the used methodology. In section 
III is summarized the achieved experimental results. Section 
IV concludes the work and some directions for future 
researches are given. 

II. METHODOLOGY 

A. The Complete Procedure 

A simplified diagram of the complete approach is shown in 
Fig. 2. 
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Fig. 2. The complete procedure for sleep spindles identification 

The procedure utilizes EMD for background filtering, 
morphological operations for envelope detection and two 
cascaded decision stages. In the following sections each step 
is described in detail. 

B. Empirical Mode Decomposition 

The EMD is a powerful tool for analysis of non-stationary 
and nonlinear time series [5]. It overcomes the inefficiency of 
the Short-Time Fourier Transform (STFT) or wavelet 
transform in terms of combined time-frequency resolution and 
non-adaptive levels of time/frequency scales respectively. The 
EMD decomposes the signal into superposition of components 
called Intrinsic Mode Functions (IMF) with well defined 
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instantaneous frequency. An IMF has two properties: the 
number of extrema and the number of zero crossing are equal 
or differ by one in the whole data set; at any point the mean of 
envelopes defined by the local minima and maxima is zero. 
The procedure of finding an IMF is iterative. It consists of: 
identifying the extrema of the signal  x t ; generating the 
envelopes with a cubic spline [6]; determination of the local 
mean 1 . The process repeats (1) until the first IMF candidate 

1h  satisfies the mentioned above properties.  

   1 1x t h  . (1) 

 After k  iterations the first component 1 1kc h  represents 
the finest oscillations in the signal. The complete set of the 
residues nr  are calculated according to: 

 1 2 2 1,...,n n nr c r r c r    , (2) 

where  1 1r x t c  . Finally the signal is decomposed as 
follows: 

  
1

n

i n
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x t c r


  . (3) 

In this paper we use 1h  as a component containing mostly 
the wanted sleep spindles. 

C. Morphological Operations 

The basic idea behind the mathematical morphology is an 
interaction of the signal with another simple pre-defined shape 
called structuring element. For extracting the sleep spindles 
we use the following morphological operations [7]: 

     1 1, ,OpenClose h Open Close h g g , (4) 

where g is a flat structuring element of type disk with radius 
of 7. The type and the parameters of g  are chosen 
experimentally considering signals sampled at 128Hz rate. 

D. Decision Stages 

In the first decision stage we perform an amplitude 
thresholding for finding the sleep spindles candidates. For 
each signal subset with 20s duration a proper threshold is 
selected using the triangle method over the histogram. 
Although not optimal, the method performs well in this 
application. The second decision stage discards or merges the 
input candidates according to time parameters of a single 
sleep spindle or sleep spindles train [1]. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The proposed approach has been tested and evaluated with 
the “The Sleep-EDF Database” provided by PhysioNet [8], 

[9]. In Fig. 3 is shown an example of successfully identified 
sleep spindles. In the same figure the result of the proposed 
approach is compared with band-pass filtered EEG with zero-
phase filter. Also the Hilbert envelope is given and its 
detected extrema. It can be seen that the EMD assures better 
sleep spindles discrimination from the background level. 

 

Fig. 3. A sample of EEG containing two successfully identified sleep 
spindles and its boundaries (first graph) according to proposed 

approach (second graph). A comparison with high pass filtering and 
Hilbert envelope is also given (third graph) 

From the database we selected EEG signals from four 
subjects. After that we extracted the subsets marked as sleep 
stage 2. The sleep spindles onsets and offsets were manually 
annotated by an expert. For evaluation of the approach we use 
the standard criteria for binary classification performance: 
sensitivity Se  and specificity Sp . Also we investigated the 
relative errors of the detected onsets and offsets of the sleep 
spindles according to: 
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where ,on is  is the expert annotated onset, ,off is  is the expert 
annotated offset, ,ˆon is  is the detected onset, ,ˆoff is  is the 
detected offset by the algorithm and i  is the number of the 
detected sleep spindle. We achieved Se  of 84.7% and Sp  of 
79.3 %. The mean value of the relative onset errors  on e  is 

7.8 % with standard deviation  on e = 10.2%. The mean 

value of the relative offset errors  off e  is 9.4 % with 

standard deviation  off e =14.4%. 
We performed a limited test of the proposed approach with 

EEG signals with dominant alpha waves. The experiments 
showed the necessity of some future improvements in order to 
use the type of the background activity as additional input of 
the algorithm. 

134



 
 

IV. CONCLUSION 

In this paper we presented an approach for sleep spindles 
identification in EEG. Its purpose is to be a key part into a 
multimodal system for automated sleep staging. The approach 
performs well in binary classification test and gives 
satisfactory results in terms of achieved errors of the sleep 
spindles boundaries detection. The future work will be 
concentrated on development of better classification stage 
with probabilistic output in order to exploit the statistical 
dependency between occurrence of sleep spindles and k-
complexes in sleep stage 2. 
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