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Abstract – The paper describes inharmonicity of musical in-
struments with strings. In the first part an algorithm for deter-
mination of coefficient of inharmonicity is shown, as well as algo-
rithm for inharmonicity estimation and estimation of mean ali-
quote error of two-tone. In the second part paper shows results 
of algorithm’s application in signal processing of tones in contra 
octave of upright piano “August Förster” manufactured in the 
year 1970.  The results are given in graphics and in tables. An 
estimation of inharmonicity and medium aliquote error is given 
by comparative analysis made with Steinway pianos and Nord-
iska 1 and Straud upright pianos.  
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I. INTRODUCTION 

Music theory defines basic characteristics of sound: a) last-
ing, b) intensity and c) color. The term color applies to sound 
in transcendental meaning which shows complexity of this 
sound feature. Sound source produces a sound with basic fre-
quency (basic tone) and following tones (aliquotes of basic 
tone). Different number of present aliquotes (lat. aliquoties, 
few times) and their different relative volume within the frame 
of whole sound determine a sound color [1]. Aliquotes are 
also called partial tones or partials. Related to the frequency of 
basic tone f0 (fundamental frequency) aliquotes can have fre-
quencies which are: a) integers (harmonics) and b) fractional 
multiplication of fundamental frequency (inharmonics) [2]. 

Instruments with strings produce tones by means of string 
vibration. If we talk about ideal string fixed at both ends, ali-
quotes are harmonious. Ideal string is to be understood as 
string with infinite large elasticity. However, in reality, there 
is not ideal string, but finite elasticity i.e. stiffness. Piano 
strings are tensed by strong force so their elasticity is reduced. 
As a consequence, frequency positions of aliquotes are at po-
sitions of non-integer multiplications of fundamental frequen-
cy. Logically, an instrument with such strings is not harmo-
nious. Besides string’s stiffness, inharmonicity of instrument 
is influenced by character of acoustic impedance of piano’s 
resonator’s board i.e. guitar’s resonator’s body [3].  Discre-
pancy from harmonicity, as a consequence gives less aliquote 
instruments. The tone produced on inharmonious instrument 
is not necessarily unpleasant. There is a statement in [3] that 
slightly inharmonious tone sounds in a way warmly. 

Piano inharmonicity phenomena are described in many pa-

pers. Probably the oldest could be [4] and [5]. Paper [6] sug-
gests formula which defines relation among frequency of ali-
quote fk and inharmonicity coefficient β of vibrating string. 
Once we determine inharmonicity coefficient of strings that 
generate tone, we have determined inharmonicity coefficient 
of whole instrument. In [7] we see that piano and upright pi-
ano inharmonicity of bass range is in scope of 50x10-6 till 
600x10-6. In [8] measurements are performed and inharmonic-
ity factor has been determined for bass-range strings: sub-
contra octave (A0), contra-octave (E1 and A1) and great oc-
tave (E2 and A2) on Steinway D (grand piano), Steinway C 
(baby grand piano), Nordiska 1 (upright piano) and Straud 
(upright piano). This system of tones designation, known as 
Anglo-American way of designation, is chosen in this paper in 
order to facilitate comparing of results with those published in 
prominent scientific journals. According to notation from [11] 
analyzed tones would be designated as follows: sub-contra 
octave (A0 as 2A), contra-octave (E1 as 1E , A1 as 1A) and 
great octave (E2 as E , A2 as A). 

In this paper we analyzed inharmonicity of contra octave 
tones generated at upright piano “August Förster”, serial no. 
198145, manufactured in Czechoslovakia in 1970. Coeffi-
cients of inharmonicity for all semitones from contra octave 
are determined and their mean value, which represents inhar-
monicity of the instrument, is calculated. Besides, mean ali-
quote frequency error (MAFE) and mean aliquote cent error 
(MACE) which appears as a consequence for all two-tones 
generated by tone C1 and other tones in this octave is also 
calculated. 

The paper is organized as follows: Section II describes in-
harmonicity of instruments with strings. Section III shows an 
algorithm for inharmonicity coefficient estimation. Section IV 
shows algorithm of estimation of two-tone aliquote error. Ex-
perimental results and analysis are presented in section V. 
Conclusion is given in section VI. The last section lists litera-
ture used. 

II. INHARMONICITY COEFFICIENT OF MUSICAL 
INSTRUMENTS WITH STRINGS 

When defining frequency composition of the tone, theory of 
music implies harmonicity, i.e. considers that harmonics (ali-
quotes) are integers of fundamental frequency, which is ma-
thematically expressed as: 

 1,2,...k   ,0 =⋅= fkfk   (1) 

where f0 is fundamental frequency, k ordinal number of ali-
quote,  fk  aliquote’s frequency. 
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Frequency displacement of aliquote from harmonics fre-
quency position represents tone’s inharmonicity. Inharmonici-
ty is defined by means of inharmonicity coefficient β: 

 1,2,...k   ,1 2
0 =⋅+⋅= kfkfk β   (2) 

Fig. 1 shows spectrum of tone played on upright piano. 
Vertical red lines represent frequency position of tone A0 
harmonics (f0=27.5 Hz). These are aliquote tones A0, A1, E2, 
A2, C3#, E3, G3, A3, B3, C4#, D4,... Small circles show val-
ue of amplitudal characteristic at harmonic’s position, while 
small squares represent inharmonic’s position. It is obvious 
that increased ordinal number of aliquote consequently in-
creases frequency difference of harmonics and inharmonics. 

Inharmonicity coefficient β depends of string material and 
can be calculated as: 

 
Fl
dQ
⋅⋅
⋅⋅

= 2

43

64
πβ ,  (3) 

where Q represents Young’s elastic modulus of material 
which string is made from, d strings diameter, l string’s length 
and F tension force. 
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Fig. 1. Amplitudal characteristic of tone A0 signal. 

III. ALGORITHM FOR INHARMONICITY COEFFICIENT 
ESTIMATION 

Literature suggests few algorithms for determination of in-
harmonicity coefficient β. In [9] an iterative algorithm is de-
scribed where accuracy of determination is increasing by in-
troducing more aliquotes, as well as by windows positioning 
based on previous values. Calculation represents determina-
tion of third row polynomial function coefficients which 
aprocsimates value of curved error. Based on polynomial’s 
coefficients an inharmonicity coefficient is calculated. In [8] 
an algorithm based on introduction of interpolation function is 
shown. In [10] an algorithm for calculating β, knowing fre-
quencies of two aliquotes without use of fundamental fre-
quency, is proposed. Algorithm for determination of inharmo-
nicity coefficient [10] is applied on signal x(n) and is realized 
in following steps: 

Step 1: extraction of duration block T, i.e. N samples, 

Step 2: Calculation of spectrum by applying DFT length 
NFFT: 

 ( ) ( )( )NFFTnxDFTiX ,= .  (1) 

Spectrum is calculated in discrete points i=0,...,NFFT-1. 
Step 3: Fundamental frequency f0 calculation by spectrum 

analysis and peaking of maximums, 
Step 4: Aliquote fk calculation, where k=1:Np, and Np is a 

number of aliquotes analyzed. 
Step 5: Frequency difference calculation between harmonic 

and inharmonic of  k-th aliquote: 

 ( ) 0fkfke k ⋅−= .  (2) 

Step 6: Inharmonicity coefficient calculation: 

 2
222

2
2

⎟
⎠
⎞

⎜
⎝
⎛−

−⎟
⎠
⎞

⎜
⎝
⎛

=

k
mfmfk

f
k
mf

km

mk
β ,  (3) 

where m and k are aliquotes and fm i fk corresponding ali-
quote’s frequencies. 

IV. ALGORITHM OF ESTIMATION OF TWO-TONE 
ALIQUOTE DISTORTION 

Two-tones represent simultaneous sounding of two tones. 
Theory of aliquotes [11] sais that spectral content of one tone 
consists of harmonics which are, in the same time, harmonics 
of other tones. Simultaneous sounding of more tones means 
spectral overlapping of corresponding aliquotes. But, due to 
existence of some tones inharmonicity, aliquotes get untuned. 
Discrepancy of one tone’s aliquotes related to other tone’s 
corresponding aliquotes, inevitably leads to distortion of re-
produced two-tone. In this paper we propose the measure of 
two-tone aliquote distortion. Suggested algorithm for calcula-
tion of aliquote two-sound distortion consists of following 
steps: 

Input: aliquotes of two tones f1,k and f2,k where  k=1:Np, and 
Np is the number of aliquotes analyzed.  

Output: mean aliquote frequency error (MAFE), mean ali-
quote cent error (MACE), instrument’s inharmonicity Pβ . 

Step 1: detection of tones which form two-tone, 

 _2  _1; 1,21,1 tonftonf ⇒⇒ .  (4) 

Step 2: Calculation of mutual aliquotes: 
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where G is number of pairs (k,l) which fulfill condition of 
equality of aliquotes. 

Step 3: Mean aliquote frequency error: 
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Mean aliquote cent error: 
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where  ftocent is transformation function of frequency axis 
into cent axis with normalization to f1,1 frequency. 

Step 4: Inharmonicity calculation of all two-tones in contra 
octave: 
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where ND is a number of two-tones analyzed. 
Step 5: Calculation of instrument’s inharmonicity in contra 

octave as a mean value of some tone’s inharmonicity coeffi-
cients: 

 ∑
=

=
SNton
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S
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P N

_

1_

1 ββ ,  (10) 

where S is a continuum of tones analyzed, NS number of con-
tinuum S elements, and βS inharmonicity factor of correspond-
ing tone. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

For the purpose of calculating instrument’s inharmonicity 
coefficient in contra octave, a database of musical signals is 
established. Signals are treated by algorithms described in 
sections III and IV. Algorithm’s parameters are T=0.66s, 
NFFT=10*218, m=6, k=10, NP=20, NS=13. Obtained results 
are presented in graphics and tables. 

A. Base 
Base contains musical material pertaining to tones from 

contra octave S={C1, Cis1, D1, Dis1, E1, F1, Fis1, G1, Gis1, 
A1, Ais1, B1, C2}. Tones are played at upright piano “August 
Förster” from the year 1970. Recording has been done  with 
sampling frequency  fs=44.1 kHz, and 16 bit per sample. 

B. Results 
Referent ton’s C1 time shape of signal is shown at fig. 2., 

Frequency difference of harmonic and inharmonic compo-
nents is shown at fig. 3. Amplitudal characteristic is shown at 
fig. 4. Fig. 5 shows frequency positions of harmonics and in-
harmonics aliquotes for playing mayor third C1-E1, while 
positions of inharmonic aliquotes are presented at fig. 6.a (ali-
quote E3), fig. 6.b (aliquote E), fig. 6.c (aliquote E5). Position 
details of aliquote C5 with mayor third C1-C2 is shown at fig. 
6.d. Values of semitones inharmonicity coefficients from con-

tra octave are displayed in table I. Frequency and cent values 
of differences of harmonious and inharmonious aliquotas are 
given in table II. 

 

Fig. 2. Time shape of tone C1 
referent signal. 

 

Fig. 3. Frequency difference of 
harmonious and inharmonious 

components (tone C1). 

 
Fig. 4. Amplitudal characteristic of tone C1 signal. 

 

Fig. 5. Frequential position of aliquote components (harmonics and 
inharmonious) when playing mayor third (C1,E1). 

 
a) 

 
b) 
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c) 

 
d) 

Fig. 6. Inharmonious aliquotes position details with mayor-third C1-
E1: a) E3, b) E4, c) E5 and d) aliquote C5 with mayor-third C1-C2. 

TABLE I 
INHARMONICITY OF SEMITONES IN CONTRA OCTAVE 

Ton βS  (x10-4) Ton βS  (x10-4) 
C1 4.4956 G1 5.3208 
Cis1 2.6631 Gis1 2.8147 
D1 4.8457 A1 3.2452 
Dis1 4.7512 Ais1 3.122 
E1 5.088 B1 2.113 
F1 4.3875 C2 2.6589 
Fis1 3.399 

Pβ  3.7619 

TABLE II 
FREQUENTIONAL AND CENT DIFFERENCE OF TWO-TONE  

HARMONIOUS AND INHARMONIOUS ALIQUOTAS IN CONTRA OCTAVE  

Ton MAFE [Hz] MACE [cent] 
C1-D1 5.0889 19.2460 
C1-E1 4.3319 13.9235 
C1-F1 4.4637 17.5148 
C1-G1 3.0113 14.7403 
C1-A1 19.8257 94.6447 
C1-B1 11.5236 39.9854 
C1-C2 5.1298 22.7950 
 =MAFE 7.6250 =MACE 31.8357 

C. Results analysis 

By comparing mean values of inharmonicity coefficients 
for semitones from contra octave (table I) with inharmonicity 
coefficients of piano Steinway D and Steinway C, as well as 
with upright piano Nordiska 1 and Straud (data from 8), we 
come to the following conclusion:  

a) Piano Steinway D has the least inharmonicity (βsr=87 
x10-6), 

b) baby grand piano Steinway C has less inharmonicity 
(βsr=105.3 x10-6) than upright piano Nordiska 1 (βsr=201.6 
x10-6) and Straud (βsr=296.22 x10-6), 

c) tested “August Förster” upright piano has the largest in-
harmonicity in contra octave Pβ =376.19x10-6 (4.32 times 
larger than Steinway piano).  

Analyze of frequential and cent values of two-tone’s har-
monious and inharmonious aliquotes leads to conclusion that 
discrepancies in “August Förster’s” contra octave have signif-
icant values in the range over tenth aliquote, where discrepan-
cies are even larger than one semitone. We should have in 

mind that these are frequencies in scope from 300 to 1200 Hz 
where human ear shows god sensitivity.  

Our further activities will include comparative analysis of 
some other pianos and upright pianos inharmonicities, as well 
as understanding and analysis of personal impressions and 
experience of listeners. 

VI. CONCLUSION 

An upright piano’s inharmonious string’s vibration effect, 
determined with inharmonicity coefficient, is analyzed in the 
paper. An algorithm for estimation of inharmonicity coeffi-
cient of strings, and whole instrument is described. In addi-
tion, an algorithm for calculating two-tone’s aliquote error is 
proposed. That algorithm is applied to determine inharmonici-
ty in contra octave of August Förster upright piano from 1970. 
Comparative analysis and presented results for piano Stein-
way and upright pianos Nordiska 1 and Straud proof  piano’s 
superiority comparing to upright piano’s group. Upright piano 
August Förster showed greatest inharmonicity in contra oc-
tave which is 4.32 times larger related to grand piano. Two-
tone aliquote error analysis showed that in range over tenth 
aliquote, discrepancies could be larger than a semitone. 
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