

Tempo Map Retrieval from the MIDI Clock Stream
Lutshayzar Gueorguieff1 and Peter Antonov2

Abstract—This paper contains algorithm flowchart, short
description, and detailed test results and error statistics of a
method for MIDI tempo map retrieval on MIDI-recording with
external MIDI-clock synchronization. The test results prove that
it is possible to overcome an annoying deficiency of the MIDI
standard – the lack of a Universal real-time message system
exclusive message providing information for the current tempo.

Keywords—MIDI, clock, tempo, synchronization, recording

I. INTRODUCTION

There are three basic ways to convert a MIDI sequencer file
from a proprietary format to a Standard MIDI File (SMF) –
direct conversion to a SMF, a MIDI File Dump [1], and
“synchronized overplay” [2]. Direct conversion (e.g. via the
Roland MRM-500 OS or the converters by Gary Giebler)
seems to be the most straightforward. But each disk and file
format requires its own conversion program, and format
descriptions are available for insiders only – others must rely
on reverse engineering to obtain one. This means that there is
no guarantee that all data are identified and processed
correctly. The MIDI File Dump standard is not applicable for
sequencers either, as units that do not support the SMF format
do not support it either. So, synchronized overplay remains the
only option. It is universal, as it does not depend on the
sequencer brand and model. But unlike MIDI data, retrieval of
Meta data (including tempo data) is impossible this way.
Neither there is a Universal real-time system exclusive
message that would provide information about the current
tempo. This is a great problem for sequences with complex
tempo maps that are completely lost on synchronized
overplay. But the tempo map could still be retrieved on
synchronized overplay. This paper describes how it can be
done and what results can be expected, based on real world
tests.

Actually, the method was already announced in a paper [3]
by one of the authors, but only in Bulgarian, with some
inaccuracies, a C-specific description, and few test results.
This paper addresses these shortcomings with an algorithm
flowchart and much more detailed test results, including
detailed statistics.

II. PRINCIPLE OF OPERATION

Two programmable timers are required, both clocked by the
system clock, divided with a fixed ratio. Timer #1 measures

the MIDI clock byte period. Timer #2 can be regarded as the
programmable divider of a virtual “frequency synthesizer”. Its
division ratio is proportional to the MIDI clock period (a fine
frequency adjustment). Its output is compared with the MIDI
clock stream by a virtual “phase detector” (implemented in
software), which does a rough phase adjustment.

III. ALGORITHM

Fig. 1 presents the flowchart of the algorithm. Blocks 1–4
contain an excerpt from the second level received data
interrupt handler. It gets executed only if the received byte is a
MIDI clock byte. The oldTick counter registers the number of
timer interrupts already processed on receiving the byte.
MAX_TICK is the number of interrupts per crotchet (120), and
CLKS_PER_QUARTER is the number of MIDI clock bytes
per crotchet (always 24). So, 5 timer interrupts occur between
each two MIDI clock bytes, and oldTick gets incremented by 5
too.

In block 5, the TickAdjust global variable registers the sign
of the rough (phase) adjustment, which is done in blocks 5–9
on every timer interrupt, if TickAdjust is nonzero. The
adjustment is disabled at the end of the system exclusive
messages (block 2). The fine (frequency) adjustment is done
in block 4. The total variable holds the number of timer clocks
between each [sub]beat (time signature denominator),
obtained through the measureClock() function. This function
(not given here) uses timer #1 to measure the MIDI clock
period and initializes timer #2 with a value five times less than
the measured one. Thus, there are always 5 interrupts of timer
#2 between two consecutive MIDI clocks.

Later, total is used to initialize the Tempo global variable.
Blocks 5–9 present the main part of the newTick() function

for updating the timer interrupt counter TimerTick. This
function is called on each interrupt of timer #2. It does the
rough (phase) counter adjustment too. This is done with only
one step forwards or backwards in order to avoid sharp
changes, which would lead to generation of superfluous
Tempo Meta events.

Blocks 10–12 show an excerpt from the record() function.
If the tempo difference for each [sub]beat (denominator d of
the time signature) is greater than the dTempoMax threshold
(2%, the smallest instant tempo change the human ear
perceives [4]), a Tempo event is generated. Its value (in µs per
crotchet) is

t =
d ⋅ 1000000

4 ⋅ fТ
 ⋅

oldTempo +

dtempo
 tempos (1)

where fT is the timer clock frequency, oldTempo is the
previous Tempo value, dtempo is the accumulated error, and
tempos is the Tempo event counter. The event is generated at
the time of the last detected tempo change tempoTickDelta.
After that, this time value, the tempo and the threshold are up-

1Lutshayzar Gueorguieff is with the Faculty of Computing and
Automation at the Technical University of Varna, Studentska Str. 1,
Varna 9010, Bulgaria. E-mail: lig@tu-varna.bg

2Peter Antonov is with the Faculty of Computing and Automation
at the Technical University of Varna, Studentska Str. 1, Varna 9010,
Bulgaria.

145

Fig. 1. Flowchart of the tempo map retrieval algorithm. Computational complexity: O(1), as there are no loops (also in the external functions).

dated, and the error and the tempo counter – initialized. Else
(if the aforementioned tempo difference is less), the error just
gets accumulated and the counter – updated. The last Tempo
event is generated at the end of the recording (not shown
here). So, only one Tempo event is thus generated for pieces
having a constant tempo.

IV. EXPERIMENTAL RESULTS

The next figures show the results and statistics from the
tempo map retrieval using the algorithm described above when
doing synchronized overplay for several MIDI sequences.

1) «Arabesque»:
This is a classical piece for piano with tempo rubato,

changing on each crotchet. Fig. 2 shows its original tempo
map and the retrieval errors for this piece, aligned by
crotchets. The errors result mostly from the imperfect
playback timing, as the playback program in this and all other
cases but one runs in Windows, where playback latency is
considerable and variable.

2) «Clair de lune»:
This is very slow classical piece for piano, also with tempo

rubato, changing on each crotchet. Fig. 3 shows its original
tempo map and the retrieval errors for this piece, aligned by
crotchets. The errors are more than an order of magnitude
smaller because the sequence is played under “pure” MS-
DOS.

Fig. 4 presents the error distribution for the first two pieces.
It can be seen that the sharp tempo changes in both lead to
very precise tempo retrieval as the 2% threshold is always
exceeded.

3) “Baklava”:
This is a fully orchestrated Russian folk song with a

dynamic tempo. Unlike the first 2 pieces, the tempo changes
here are so gradual that the 2% threshold is not always

exceeded. This leads to fewer retrieved tempo events, and
temporary errors (see measures 49–61 and especially 72 on
fig. 5, top).

4) “Czardas”:
This is an excerpt from the operetta “Die Csárdásfürstin”

with a very dynamic tempo. The recovered tempo events are
almost as many as the original ones, yet there are 2 false
tempo events on measures 65 and 121 due to the
aforementioned variable latency when playing MIDI in
Windows (fig. 5 bottom, 6).

III. CONCLUSION

The tests confirm the accuracy and robustness of the tempo
map retrieval algorithm, especially for sharp tempo changes.
The induced error is way under the aural perception threshold.
So, all the temporal information with musical meaning can
thus be recovered on synchronized overplay, combining the
advantages of MIDI Time Code and MIDI clock
synchronization.

REFERENCES

[1] MIDI Manufacturers’ Association, The Complete MIDI 1.0
Detailed Specification, Version 96.1, 2nd Edition, Los Angeles,
November 2001.

[2] Nathorst-Boos, E., “MIDI Xplained”, Steinberg Hard- und
Software GmbH, Hamburg 1993 (“Hyperbok om MIDI”,
Synkron musik & datorer, Stockholm 1991).

[3] Георгиев, Л., „Метод за автоматично възстановяване на
картата на темпото при запис със синхронизация по MIDI-
часовник“, Национална конференция с международно
участие „Телеком ’97“, т. I, Доклади на български език,
1998 г., стр. 574–580.

[4] Jones, M., Fay, R., Popper, A., “Music Perception”, Springer
Handbook of Auditory Research, Vol. 36, 2010, pp. 178–179.

146

Fig. 2. Original tempo map (top) and retrieval errors [%] (bottom) for «Arabesque». Average error: 0.019%, standard deviation: 0.132%.

Fig. 3. Original tempo map (top) and retrieval errors [%] (bottom) for «Clair de lune». Average error: 0.005%, standard deviation: 0.011%.

Fig. 4. Error distribution [frequency of occurring] for «Arabesque» (left) and «Clair de lune» (right).

147

Fig. 5. Differences (in bright red) between the original and the recovered tempo map for “Baklava” (top) and “Czardas” (bottom).

Fig. 6. Errors (top) and their distribution (bottom) for “Czardas”. Average error: 0.009%, standard deviation: 0.234%. Major errors coincide
with fig. 5, bottom. (Note that the abscissa of the errors is ticked off in tempo events, unlike the one of the tempo map, ticked off in measures.)

148

