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Abstract – In this paper, we introduce a lossless compression 
method for CT image sequences which is efficient due to 
compression ability and complexity. It consists of a new 
decorrelation method called Hierarchical Adaptive Karhunen-
Loeve Transform (HAKLT) which has a very good energy 
compaction and combined with standard AC and RLE coders, it 
has higher compression ratio than the standard JPEG. The aim 
is to obtain high decorrelation for each group of consecutive CT 
images. In result, the main part of the energy of all images in the 
sequence is concentrated in a relatively small number of eigen 
images. The computational complexity of the new algorithm is 
reduced in average 2 times, when compared to that of standard 
KLT.  
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I. INTRODUCTION 

Medical images are widely used for diagnosis purposes and 
all types of surgery procedures. They include human body 
pictures and are being present in digital form. Imaging devices 
improve everyday and generate more data per patient. In the 
field of profiling patient’s data, medical images need long-
term storage [1]. Therefore, images need compression and 
compression ratio is important. However, in real time 
processes such as telemedicine and online diagnosis systems 
which need hardware implementation, simplicity of 
compression algorithm plays an important role. It can 
accelerate computation process. But for high value images 
such as medical images where loss of critical information is 
not acceptable, lossless compression is preferred.  

Lossless algorithms are especially important for systems 
transmitting and archiving medical data, because lossy 
compression of medical images used for diagnostic purposes 
is, in many countries, forbidden by law. Furthermore, we have 
to use lossless image compression when we are unsure 
whether discarding information contained in the image is 
acceptable or not. Some systems such as medical CT scanner 
systems require rapid access to large sets of images that are 
further processed, analyzed, or just displayed. In such a 
system, the images or volume slices are stored in the memory 
since mass storage often turns out to be too slow. In this case 
a good lossless image compression algorithm could virtually 
increase the memory capacity allowing the processing of 

larger sets of data. 
Lossless JPEG, JPEG-LS and lossless version of JPEG2000 

are lossless methods introduced by JPEG committee and are 
widely used in the world [2]. We can add also the following 
methods for CT image compression: inter frame decorrelation 
based on hierarchical interpolation (HINT) [3], spatial active 
appearance model [4], and distributed representation of image 
sets based on Slepian-Wolf coding [5]. Lossless JPEG is 
about twenty years old standard and due to development and 
performance enhancement of digital medical imaging systems, 
no longer performs adequately enough for these kinds of 
systems. 

One of the most efficient methods for decorrelation and 
compression of groups of images is based on the KLT, also 
known as transform of Hotelling, or Principal Component 
Analysis (PCA) [6]. For its implementation the pixels with the 
same spatial position in a group of N images compose the 
corresponding N-dimensional vector. The basic difficulty of 
the KLT implementation is related to the large size of the 
covariance matrix. For the calculation of its eigenvectors is 
necessary to calculate the roots of a polynomial of nth degree 
(characteristic equation) and to solve a linear system of N 
equations. For large values of N, the computational 
complexity of the algorithm for calculation of the transform 
matrix is significantly increased.  

In this paper we propose a possible approache for reduction 
of the computational com-plexity of KLT for N-dimensional 
group of medical images based on the “Hierarchical Adaptive 
KLT” (HAKLT). Unlike the known hierarchical KLT 
(HKLT) presented in [7], this transform is not related to the 
image sub-blocks, but to the whole image from one group. For 
this, the HAKLT is implemented through dividing the image 
sequence into sub-groups of 3 images each, on which is 
applied Adaptive KLT (AKLT), of size 3 3. This transform 
is performed using equations, that are not based on iterative 
calculations, and as a result, they have lower computational 
complexity. To decorrelate the whole group of medical 
images is necessary to use АKLT of size 3 3, which to be 
applied in several consecutive stages (hierarchical levels), 
with rearranging of the obtained intermediate eigen images 
after each stage. In result we obtain a decorrelated group of 9 
eigen medical images.  

The paper is organized as follows. In Sections 2 and 3 we 
will introduce the principle for decorrelation of CT images 
group through HAKLT, the calculation of eigen images 
through АKLT with 3 3 matrix. Section 3 is devoted to the 
experimental results and comparison of the new method with 
JPEG using compression ratio and PSNR calculated on 
sequences of CT images. Finally, Section 4 gives our 
conclusion remarks. 

1Peter Ivanov, 2Agata Manolova, 3Roumen Kountchev are with the
Faculty of Telecommunications at Technical University of Sofia, 8
Kl. Ohridski Blvd, Sofia 1000, Bulgaria, E-mail:
peter.n.ivanov@gmail.com, amanolova@tu-sofia.bg, rkountch@tu-
sofia.bg. 

169



 
 
 

II. PRINCIPLE OF CT IMAGE SEQUENCE 
DECORRELATION USING HIERARCHICAL 

ADAPTIVE KLT 

The sequence of CT images is divided into Groups of 9 
images (GMI), for which we suppose that they are highly 
correlated. On the other hand, each GMI is further divided 
into 3 sub-groups. The algorithm for 2-levels HAKLT for one 
GMI is shown on Fig. 1. As it is easily seen there, on each 
sub-group of 3 images from the first hierarchical level of 
HAKLT we apply АKLT with matrix of size 3 3. In result 
are obtained 3 eigen images (colored in yellow, blue and 
green correspondingly). After that, the eigen images are 
rearranged so that the first sub-group of 3 eigen images 
comprises the first images from each group, the second group 
of 3 eigen images – the second images from each group, etc. 
For each GMI of 9 intermediate eigen images of the first 
hierarchical level we apply in similar way the next AKLT, 
with a 3 3 matrix, on each sub-group of 3 eigen values. In 
result are obtained 3 new eigen images (colored in yellow, 
blue, and green correspondingly) for the second hierarchical 
level. Then the eigen images are rearranged again so, that the 
first group of 3 eigen images contains the first images from 
each group before the rearrangement; the second group of 3 
eigen images - the second image before the rearrangement, 
etc. At the end of the process we obtain a decorrelated 
sequence of eigen images. Through inverse НАKLT the 
original sequence could be restored. 

 

 
 

Fig. 1. Algorithm for 2-levels Hierarchical Adaptive KLT for Group 
of 9 Medical Images 

 
 

III. CALCULATION OF EIGEN IMAGES THROUGH 
АKLT WITH 3 3 MATRIX 

For the calculation of eigen images through АKLT with 3 3 
matrix for GМI sub-group we use the approach for the 
representation of the 3D colour vector in the KLT space, 
given in [9]. From each sub-group of 3 medical images with S 
pixels each, shown on Fig. 2, are calculated the vectors 

t
ssss CCCC ],,[ 321=

r
 with s = 1, 2, . . , S (on the figure are 

shown the vectors for the first 4 pixels only). 
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Fig. 2. Sub-group of 3 images from the GМI 
 
Each vector is then transformed into corresponding vectors 

t
ssss LLLL ],,[ 321=

r
 through АPCA with the matrix [Φ ] of 

size 3 3. 
The covariance matrix [KC] of size 3×3 for vectors sC

r
 is 

calculated: 
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where t
C CCCm ],,[ 321=
r

 is the mean vector. Here, 
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The elements of the mean vector cm

r
 and of the matrix [KC] 

are defined in accordance with the relations:  
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 The eigen values 321 ,, λλλ  of the matrix [KC] are 

defined in accordance to the solution of the characteristic 
equation: 

,0||det 23 =+λ+λ+λ=λδ− cbak jiji   (6) 
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where:
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Since the matrix [KC] is symmetric, its eigen values are real 
numbers. For their calculation the equations of Cardano could 
be used: 
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The eigen vectors 321 ,, ΦΦΦ
rrr

 of the covariance matrix [KC] 
are the solution of the system of equations: 
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The solution of the system of Eq. (9) is used to calculate 
components of mth eigenvector ,],,[ 321

t
mmmm ΦΦΦ=Φ

r
 

which corresponds to the eigen value mλ . The direct АKLT 

for vectors t
ssss CCCC ],,[ 321=

r
, from which are obtained 

vectors t
ssss LLLL ],,[ 321=

r
, is: 
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The components of vectors t
ssss LLLL ],,[ 321=

r
 could be 

processed in various ways (such as orthogonal transforms, 
quantization, decimation and interpolation, etc.).  
In result are obtained the corresponding vectors 

t
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q
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(.) ,(.) ,(.) 321 ψψψ  are the functions of the used transform. For 

the restoration of vectors t
ssss CCCC ]ˆ,ˆ,ˆ[ˆ
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r

 through 
inverse AKLT we needed not only the vectors 

t
ssss LLLL ]ˆ,ˆ,ˆ[ˆ

321=
r

, but also the elements Φij of the matrix 

][Φ , and the values of 321 ,, CCC  as well. The total number 
of these elements could be reduced representing the matrix 

][Φ  as the product of matrices )]([ 1 αΦ , )]([ 1 βΦ , )]([ 1 γΦ  with 
rotation around coordinate axes for each transformed vector in 
Euler angles α, β and γ correspondingly: 
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Then, for the calculation of the elements of the inverse 
matrix 1][ −Φ  is enough to know the values of the 3 rotation 
angles α, β and γ. In result, the number of the needed values 
for the calculation of the matrix 1][ −Φ  is reduced from 9 
down to 3, i.e. 3 times reduction. 

IV. EXPERIMENTAL RESULTS 

On the basis of the 2-level HAKLT algorithm, we have 
experimented with sequences of CT images with size 
512 512 pixels, 8 bpp. The sequence was divided into sets, 
each containing 9 consecutive CT images. Set 3 is illustrated 
on Fig. 3.  

 The results represented on Fig. 4 a) and b) show that 
the main part of the energy of all 9 images is concentrated in 
the first eigen image, and the energy of each next eigen image 
decreases quickly. On these figures the power distribution of 
pixels of eigen images from Set 3 is given after first level of 
HAKLT, before and after their rearrangement in 
correspondence to Fig. 1. 

 

 
Fig. 3. Group of 9 consecutive CT images in Set 3. 

 
We can conclude that for all the 7 sets of 9 images in GMI, 

95,7 % of the total mean power is concentrated in the first 3 
eigen images of each set. The mean power of the first eigen 
image for all sets is more than 250 times larger than that of 
each of the next 8 eigen images. The values for pixels of the 
еigen images, obtained in result of the direct 2-level HAKLT, 
were calculated with full accuracy, and after corresponding 
rounding could be transformed into 8-bit numbers. 
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a) 

 

 
b) 

Fig. 4. Power distribution for Set 3, level 1: a) - not arranged, b) - 
arranged. 

 
Then, if on the 8 bpp еigen images is applied the inverse 2-

level HAKLT, the quality of corresponding restored images in 
GMI, evaluated by their peak signal-to-noise ratio (PSNR), is 
≥ 45 dB. Hence, the sequence of 9 images could be restored 
with retained visual quality. This result illustrates the ability 
for efficient compression of a sequence of CT images, when 
HAKLT is used. 

The experimental results were obtained with the software 
implementation of HAKLT, in Visual C. 

To be able to compare the represented approach with the 
standard JPEG we combine the HAKLT with Burrows-
Wheeler transformation (BWT) [9] and entropy encoding. The 
results represented in fig. 5 and 6 show that the proposed 
algorithm for lossless data compression demonstrates higher 
accuracy than the JPEG and retain fully quality of the restored 
images. The mean compression ratio for all 7 sets of CT 
images for the HAKLT BWT+RLE+AC Coder is 1.74 
compared to the compression ratio of 1.69 for JPEG, the mean 
Quality PSNR for HAKLT is 46.21 dB and for JPEG is 54.67 
dB. 

V. CONCLUSION 

The computational complexity of the 2-level HAKLT 
algorithm compared with that of the KLT algorithm, is at least 
1,7 times smaller than KLT algorithm for each value of Р 
pixels (in average, about 2 times). The basic qualities of the 
offered HAKLT for processing a group of sequential medical 
images are: 

• Lower computational complexity than KLT for the 
whole GMI, due to the lower complexity of AKLT; 

• Ability for efficient lossless compression of GMI 
with retained visual quality of the restored images; 

There is also a possibility for further development of the 
HAKLT algorithm, through compression of video sequences 
from stationary TV camera; sequences of multispectral and 
multi-view images, etc. 
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