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Abstract – .  Built in self test (BIST)  is popular approach 

for VLSI testing. It uses a linear feedback shift register 
(LFSR) as test pattern generator since LFSR generates all 
possible test vectors which means it can achieve high fault 
coverage in a relatively short run test vectors. This paper 
shows the implementation of parallel LFSR (PLFSR) intended 
for testing intellectual property (IP) blocks within a VLSI IC. 
The PLFSR is connected to  n IP’s inputs in order to apply in-
test mod test vectors which, possible, detect faults. The 
proposed PLFSR is implemented on Xilinx FPGA device, runs 
at 200 MHz clock frequency and generates two random 
numbers per clock period. the described design is 
reconfigurable and is capable of operating with different 
primitive polynomials of degree up to n=32. In respect to the 
standard LFSR, the proposed design shows that it can achieve 

an appealing trade off between performance ( 2×  higher 
system throughput, from one hand, and less then 94% 
hardware overhead and dynamic power consumption, from 
the other hand.) 

Keywords – Built-In Self-Test, Linear Feedback Shift 
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I. INTRODUCTION 
Random numbers, RNs, are used today in numerous 
applications including electronic circuit testing, 
cryptography, simulations of wireless communication 
systems, Monte Carlo simulations, etc.[1]. Two basic 
approaches are used to generate RNs. The first one is based 
on measurement phenomenon of some physical process 
which is completely unpredictable such as thermal noise in 
electronic circuits, or noise-power level in radio-frequency 
receivers. Random number generators, RNGs, which use 
this principle of operation can be implemented using 
analogue and digital electronics, but these design solutions 
tend to be expensive and slow. The second approach uses 
computational algorithms that generate long sequences of 
apparently RNs. In this case RNs can be generated both by 
using software algorithms that involve complex 
mathematical operations and relatively slow RN sequences 
generation, and by using hardware which can implement 
less complex methods but fast RNs generation [2]. Up-to-
date complex VLSI CMOS ICs run in the range from 
several hundreds MHz up to several GHz, so 
implementation of low-price, high-speed and simple RNG 
becomes an ultimate design goal. The RNG as electronic 
device is designed to generate a sequence of numbers that 
lack any pattern. But in practice it is very difficult, or 
almost impossible, to generate a series of logical steps that 
produce numbers that do not follow some definite 
sequence. These RNs are called pseudo random numbers, 
PRNs.  
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There are two different hardware implementations of 
pseudo random number generators, PRNGs, that are widely 
used for logic built-in-self-test, BIST, applications [3]. The 
first one is based on usage of linear feedback shift register, 
LFSR. Its structure is simple, suitable for implementation 
as IP core within a complex VLSI ICs, and therefore is 
most commonly used to generate test patterns or test 
sequences [5-8]. The second design uses cellular automata, 
CA. The CA based PRNGs are more complex devices but 
provide patterns that look more random [2-3]. In this paper 
we have presented an efficient parallel pseudo random 
number generator based on LFSR  (PLFSR) which is used 
for fast testing the constituents (IP cores) within a complex 
VLSI circuits. In respect to the parallel implementations of 
LFSR, described in [9-10], the proposed design 
characterizes higher system throughput and 
reconfigurability. 
The rest of the paper is organized as follows. In section two 
a brief description of standard LFSR generators is given. 
Section 3 deals with principle of operation and structure of 
parallel LFSR generator. We start with mathematical 
background. After that we describe PLFSR hardware 
structure at block diagram level. Experimental results are 
given in Section 4. Concluding remarks are given in 
Section 5. 

II. STANDARD  LFSR GENERATORS 
 LFSR belong to the devices known as finite state 
machines. Its input state is a linear function of the pervious 
state. By using feedback it modifies itself on each rising 
edge of the clock. The L-bit initial value of LFSR is called 
seed, where L is called its length, and the bit position that 
affects next state is called tap. Two different LFSR 
implementations exist. The Fibonacci configuration (also 
known as external-XOR LFSR) consists of a simple shift 
register in which a binary-weighted modulo-2 sum of taps 
is fed back to the input , Fig. 1. The Galois implementation 
(alternatively called internal-XOR LFSR) consists of shift 
register, the contents of which are modified at every step by 
a binary-weighted value of the output stage, Fig. 2. 

 
Figure 1: Fibonacci implementation of LFSR 
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Figure 2: Galois implementation of LFSR 

Codes generated by any of the two aforementioned types of LFSR 
are actually pseudo-random sequences because the sequence, 
known as the period of the PRNG, repeats after a certain number 
of clock cycles. Once it reaches its final state, it will traverse the 
sequence exactly as before.  The advantage of serial LFSR 
architecture is small amount of hardware it requires. 

With aim to increase the throughput of the LFSR generator, we 
propose  a LFSR that generate k consecutive pseudo random 
numbers in parallel (PLFSR). 

III. PARALLEL LFSR GENERATOR 
Mathematical background 
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be a feedback polynomial of degree n. The polynomial (1) 
has the following property 
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In order to generate pseudo random number sequence of 
length n, polynomial (1) has to be a primitive one (see for 
example [4]).  Let 
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characterized by the polynomial (1). The next state of the 
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is an nn× matrix joined with polynomial (1), and ⊕ a 
logical exclusive-or operation. In general, i-th state of the 
LFSR as a function of the initial state can be obtained 
according to 
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Since 121 −=== kccc K , we can generate k consecutive 
pseudo random numbers in parallel, while keeping the 

same computational complexity for each of k feed-back 
results. 

We will explain the idea on the example of the polynomial 
53
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Matrix that corresponds to polynomial (2) is 
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the LFSR characterized by (2). The next four states can be 
obtained according to the following 
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According to the above equations we can conclude that 
computational complexity of determining states 

)2(),1( QQ
rr

 and )3(Q
r

 is the same. On the other hand, 
determining state )4(Q

r
 requires two XOR operations for 

computing element )4(
1q , leading to computational 

imbalance. 

Parallel LFSR implementation 

For the given feedback polynomial we propose LFSR for 
parallel generation of k consecutive pseudo random 
numbers, called parallel LFSR (abbreviated as PLFSR), 
shown in Fig. 3.   
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Figure 3: The structure of PLFSR 

PLFSR consists of the following building blocks: 

- Extended parallel shift register (E_LFSR) with n+k 
cells (flip-flops). The right most n cells correspond to 
the standard LFSR, while the k leftmost cells represent 
linear array of k individual cells, called extension array 
(EA) 

- The EXOR network is a combinatorial network of  
EXOR circuits which generate k product terms in 
parallel that feed in EA. Constituents of EXOR 
network are configuration registers that are used for 
selecting the primitive polynomial and the length of 
E_LFSR. 

- k registers, R1 to Rk, composed of n flip-flops, used 
for temporal storing of k consecutive states of PLFSR 

- Output switching network (MUX), which operates as 
k-input multiplexer. 

- Output register, Reg_out, output stage used for driving 
Circuit Under Test (CUT) 

Control logic (CL) used to generate control signals for 
driving the constituents of PLFSR. 

The PLFSR is implemented as two-macro-stage pipeline. 
Within the first macro-stage, called CALCULATION, k 
consecutive pseudo-random sequences are calculated in 
parallel. The CALCULATION  stage operates as two-cycle 
logic. During the first cycle, the content of E_LFSR is 
shifted for k positions right. In the second cycle, k 
consecutive resultant bits are calculated by EXOR network 
and written into EA. The second macro-stage, called 
OUTPUT stage, is implemented as k-cycle (poly phase) 
logic. During  the first cycle  registers R1 to Rk are loaded 
in parallel. In the next k cycles, k consecutive 
pseudorandom numbers are selected by MUX block and 
written into Reg_out. 

During system initialization configuration bits are loaded 
into EXOR network. This provides that the proposed 
PLFSR can implement any feedback polynomial of degree 
n. In a concrete case, primarily limited by the amount of 
available logic blocks and input-output capacity of FPGA 
chips, we can implement, using reconfiguration, any 
polynomial of degree  32≤n . 

The most complex part of PLFSR is the EXOR network, 
shown in Fig. 4. It consists of k reconfigurable EXOR 
blocks, each implemented as binary three of EXOR 
circuits. Multiplexers, M1 to Mn,  are used to switch on/off  
a  corresponding tap in the feedback loop. The outputs of a 
configuration register are used for driving the select signals 
of multiplexers M1 to Mn. The propagation delay of EXOR 
network is equal to the propagation delay through one 
multiplexer, plus n2log  delay through EXOR circuits. It  
is independent of the chosen feedback polynomial for the 
given n. 

 
Figure 4: The structure of EXOR network 

IV. EXPERIMENTAL RESULTS 
In order to verify our design, we have implemented both 
PLFSR and standard LFSR in FPGA technology. For the 
sake of verification we have implemented PLFSR that 
generates two consecutive pseudo random sequences in 
parallel.  The PLFSR and logics were described at register 
transfer level using VHDL. For FPGA implementation of 
PLFSR an LFSR we have used Xilinx development CAD 
tool ISE WebPack 13.1. Design verification was performed 
using test benches intended for excitation of PLFSR and 
LFSR. PLFSR and LFSR were implemented on FPGA 
devices from Virtex-6 LP series (circuit xc6vlx75tl-1lf484). 
The obtained results are given in Table 1, for standard 
LFSR, and in Table 2 for PLFSR.  

 
Table 1: Implementation results for standard LFSR 

 No of 
flip-
flops 
in 
LFSR 

No of 
occu- 
pied 
Slices 

Best 
case 
achie-
vable 
(ns) 

Dynamic  
Power 
 (mW)     

Quiescent  
Power 
(mW)     

Total  
Power 
(mW)    

Virtex6 LP 
xc6vlx75tl-
1Lff484 

32 71 1.701 6.65     781.19     787.84 
24 52 1.885 5.99 781.18 787.17 
16 38 1.888 5.62 781.17     786.80 
8 18 1.722 4.51     781.16 785.67 
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Table 2: Implementation results PLFSR 

 No of 
flip-
flops 

in 
LFSR 

No 
of 

occu-
pied 
slices 

Best 
case 

achie-
vable 
(ns) 

Dynamic 
Power 
(mW) 

Quiescent  
Power 
(mW) 

Total  
Power 
(mW) 

Virtex6 LP 
xc6vlx75tl-

1Lff484 

32 113 1.883 11.17 781.26 792.43 
24 90 1.924 11.65 781.26 792.91 
16 57 1.768 9.19 781.23 790.42 
8 35 1.735 7.69 781.21 788.89 

 

According to the results given in Tables 1 and 2 we can 
conclude the following:  

− Hardware overhead of PLFSR compared to the 
standard LFSR is from 50% (for the polynomial of 
degree 16) up to 94% (for the polynomial of degree 8). 
For the given polynomial degree n, hardware overhead 
is independent of the chosen polynomial, i.e. active 
taps. 

− Dynamic power consumption depends of the chosen 
primitive polynomial. For both PLFSR and standard 
LFSR  power consumption was estimated using the 
same polynomial. The dynamic consumption ratio 
between PLFSR and standard LFSR, varies from 1.63 
(for the polynomial of degree 16) up to 1.94 (for the 
polynomial of degree 24).  

− Contribution of dynamic power consumption to the 
total power consumption is approximately 1.5% which 
implies  that the impact of the PLFSR hardware is very 
low with respect to the total hardware of the FPGA 
chip. 

Note that the system throughput of the PLFSR is two times 
higher compared to the standard LFSR under the same 
operating conditions, e.g. system clock. 

V. CONCLUSION 
Random number generation is an important application 
area that is met in BIST devices for complex VLSI circuits. 
In this case it is essential that the random numbers 
generator be amenable to hardware implementation in 
terms of area, high throughput rate, low-power dissipation, 
and low complexity. LFSR are commonly used as pseudo 
test pattern number generators in low overhead BIST 
schemes. In this paper we have presented an efficient 
parallel pseudo random number generator based on LFSR 
which is used for fast testing the constituents (IP cores) 
within a complex VLSI circuits. The proposed scheme was 
implemented on VIrtex6 LP FPGA device (circuit 
xc6vlx75tl-1lf484), running at clock speed of 200MHz, 
while delivering two 32-bit random numbers per clock. The 
reconfigurable hardware allows to implement any 
polynomial of degree 32. In comparison to standard pseudo 
random number generator based on LFSR, the proposed 
solution characterizes 2x higher throughput rate, at cost 
penalty of 94% of higher dynamic consumption and 
hardware overhead in the worst case. 
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