

Implementation of Parallel LFSR for BIST
M. K. Stojčev, I. Ž. Milovanović, E. I. Milovanović, T. R. Nikolić*

Abstract – . Built in self test (BIST) is popular approach

for VLSI testing. It uses a linear feedback shift register
(LFSR) as test pattern generator since LFSR generates all
possible test vectors which means it can achieve high fault
coverage in a relatively short run test vectors. This paper
shows the implementation of parallel LFSR (PLFSR) intended
for testing intellectual property (IP) blocks within a VLSI IC.
The PLFSR is connected to n IP’s inputs in order to apply in-
test mod test vectors which, possible, detect faults. The
proposed PLFSR is implemented on Xilinx FPGA device, runs
at 200 MHz clock frequency and generates two random
numbers per clock period. the described design is
reconfigurable and is capable of operating with different
primitive polynomials of degree up to n=32. In respect to the
standard LFSR, the proposed design shows that it can achieve

an appealing trade off between performance (2× higher
system throughput, from one hand, and less then 94%
hardware overhead and dynamic power consumption, from
the other hand.)

Keywords – Built-In Self-Test, Linear Feedback Shift
Register, Random Number Generator, FPGA Design

I. INTRODUCTION
Random numbers, RNs, are used today in numerous
applications including electronic circuit testing,
cryptography, simulations of wireless communication
systems, Monte Carlo simulations, etc.[1]. Two basic
approaches are used to generate RNs. The first one is based
on measurement phenomenon of some physical process
which is completely unpredictable such as thermal noise in
electronic circuits, or noise-power level in radio-frequency
receivers. Random number generators, RNGs, which use
this principle of operation can be implemented using
analogue and digital electronics, but these design solutions
tend to be expensive and slow. The second approach uses
computational algorithms that generate long sequences of
apparently RNs. In this case RNs can be generated both by
using software algorithms that involve complex
mathematical operations and relatively slow RN sequences
generation, and by using hardware which can implement
less complex methods but fast RNs generation [2]. Up-to-
date complex VLSI CMOS ICs run in the range from
several hundreds MHz up to several GHz, so
implementation of low-price, high-speed and simple RNG
becomes an ultimate design goal. The RNG as electronic
device is designed to generate a sequence of numbers that
lack any pattern. But in practice it is very difficult, or
almost impossible, to generate a series of logical steps that
produce numbers that do not follow some definite
sequence. These RNs are called pseudo random numbers,
PRNs.
M. K. Stojčev, I. Ž. Milovanović, E. I. Milovanović, T. R. Nikolić
are with the faculty of Electronic Engineering, Niš, Serbia.

There are two different hardware implementations of
pseudo random number generators, PRNGs, that are widely
used for logic built-in-self-test, BIST, applications [3]. The
first one is based on usage of linear feedback shift register,
LFSR. Its structure is simple, suitable for implementation
as IP core within a complex VLSI ICs, and therefore is
most commonly used to generate test patterns or test
sequences [5-8]. The second design uses cellular automata,
CA. The CA based PRNGs are more complex devices but
provide patterns that look more random [2-3]. In this paper
we have presented an efficient parallel pseudo random
number generator based on LFSR (PLFSR) which is used
for fast testing the constituents (IP cores) within a complex
VLSI circuits. In respect to the parallel implementations of
LFSR, described in [9-10], the proposed design
characterizes higher system throughput and
reconfigurability.
The rest of the paper is organized as follows. In section two
a brief description of standard LFSR generators is given.
Section 3 deals with principle of operation and structure of
parallel LFSR generator. We start with mathematical
background. After that we describe PLFSR hardware
structure at block diagram level. Experimental results are
given in Section 4. Concluding remarks are given in
Section 5.

II. STANDARD LFSR GENERATORS
 LFSR belong to the devices known as finite state
machines. Its input state is a linear function of the pervious
state. By using feedback it modifies itself on each rising
edge of the clock. The L-bit initial value of LFSR is called
seed, where L is called its length, and the bit position that
affects next state is called tap. Two different LFSR
implementations exist. The Fibonacci configuration (also
known as external-XOR LFSR) consists of a simple shift
register in which a binary-weighted modulo-2 sum of taps
is fed back to the input , Fig. 1. The Galois implementation
(alternatively called internal-XOR LFSR) consists of shift
register, the contents of which are modified at every step by
a binary-weighted value of the output stage, Fig. 2.

Figure 1: Fibonacci implementation of LFSR

199

Figure 2: Galois implementation of LFSR

Codes generated by any of the two aforementioned types of LFSR
are actually pseudo-random sequences because the sequence,
known as the period of the PRNG, repeats after a certain number
of clock cycles. Once it reaches its final state, it will traverse the
sequence exactly as before. The advantage of serial LFSR
architecture is small amount of hardware it requires.

With aim to increase the throughput of the LFSR generator, we
propose a LFSR that generate k consecutive pseudo random
numbers in parallel (PLFSR).

III. PARALLEL LFSR GENERATOR
Mathematical background

Let

nn
k

k
k

kn xcxcxcxcxcxP ++++++= −
− LL 1
1

1
1

0
0)((1)

be a feedback polynomial of degree n. The polynomial (1)
has the following property

.0and},1,0{,1 1210 ======= −kin cccccc L

In order to generate pseudo random number sequence of
length n, polynomial (1) has to be a primitive one (see for
example [4]). Let

T
nqqqQ][)0()0()0(

2
)0(

1 K
r

=

Be a vector that corresponds to the initial state of the LFSR
characterized by the polynomial (1). The next state of the
LFSR can be obtained from

)0()1(QAQ
rr

⊕=

where

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

01000

0010
0001
1121

K

M

K

K

K nccc

A

is an nn× matrix joined with polynomial (1), and ⊕ a
logical exclusive-or operation. In general, i-th state of the
LFSR as a function of the initial state can be obtained
according to

1),0()(−⊕=⊕= iii AAAwhereQAiQ
rr

.

Since 121 −=== kccc K , we can generate k consecutive
pseudo random numbers in parallel, while keeping the

same computational complexity for each of k feed-back
results.

We will explain the idea on the example of the polynomial
53

5 1)(xxxP ++= (2)

Matrix that corresponds to polynomial (2) is

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

01000
00100
00010
00001
10100

A

Let []TqqqqqQ)0(
5

)0(
4

)0(
3

)0(
2

)0(
1)0(=

r
 the initial state of

the LFSR characterized by (2). The next four states can be
obtained according to the following

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ ⊕

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊕=

)1(
5

)1(
4

)1(
3

)1(
2

)1(
1

)0(
4

)0(
3

)0(
2

)0(
1

)0(
5

)0(
3

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

01000
00100
00010
00001
10100

)0()1(

q
q
q
q
q

q
q
q
q

qq

q
q
q
q
q

QAQ
rr

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊕=

)2(
5

)2(
4

)2(
3

)2(
2

)2(
1

)0(
3

)0(
2

)0(
1

)0(
5

)0(
3

)0(
4

)0(
2

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

2

2

01000
00100
00010
00001
10100

)0()2(

q
q
q
q
q

q
q
q

qq
qq

q
q
q
q
q

QAQ
rr

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕
⊕

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊕=

)3(
5

)3(
4

)3(
3

)3(
2

)3(
1

)0(
3

)0(
2

)0(
5

)0(
3

)0(
4

)0(
2

)0(
3

)0(
1

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

3

3

01000
00100
00010
00001
10100

)0()3(

q
q
q
q
q

q
q

qq
qq
qq

q
q
q
q
q

QAQ
rr

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕
⊕
⊕

⊕⊕

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⊕

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⊕=

)4(
5

)4(
4

)4(
3

)4(
2

)4(
1

)0(
1

)0(
5

)0(
3

)0(
4

)0(
2

)0(
3

)0(
1

)0(
2

)0(
5

)0(
3

)0(
5

)0(
4

)0(
3

)0(
2

)0(
1

4

4

01000
00100
00010
00001
10100

)0()4(

q
q
q
q
q

q
qq
qq
qq

qqq

q
q
q
q
q

QAQ
rr

According to the above equations we can conclude that
computational complexity of determining states

)2(),1(QQ
rr

 and)3(Q
r

 is the same. On the other hand,
determining state)4(Q

r
 requires two XOR operations for

computing element)4(
1q , leading to computational

imbalance.

Parallel LFSR implementation

For the given feedback polynomial we propose LFSR for
parallel generation of k consecutive pseudo random
numbers, called parallel LFSR (abbreviated as PLFSR),
shown in Fig. 3.

200

Figure 3: The structure of PLFSR

PLFSR consists of the following building blocks:

- Extended parallel shift register (E_LFSR) with n+k
cells (flip-flops). The right most n cells correspond to
the standard LFSR, while the k leftmost cells represent
linear array of k individual cells, called extension array
(EA)

- The EXOR network is a combinatorial network of
EXOR circuits which generate k product terms in
parallel that feed in EA. Constituents of EXOR
network are configuration registers that are used for
selecting the primitive polynomial and the length of
E_LFSR.

- k registers, R1 to Rk, composed of n flip-flops, used
for temporal storing of k consecutive states of PLFSR

- Output switching network (MUX), which operates as
k-input multiplexer.

- Output register, Reg_out, output stage used for driving
Circuit Under Test (CUT)

Control logic (CL) used to generate control signals for
driving the constituents of PLFSR.

The PLFSR is implemented as two-macro-stage pipeline.
Within the first macro-stage, called CALCULATION, k
consecutive pseudo-random sequences are calculated in
parallel. The CALCULATION stage operates as two-cycle
logic. During the first cycle, the content of E_LFSR is
shifted for k positions right. In the second cycle, k
consecutive resultant bits are calculated by EXOR network
and written into EA. The second macro-stage, called
OUTPUT stage, is implemented as k-cycle (poly phase)
logic. During the first cycle registers R1 to Rk are loaded
in parallel. In the next k cycles, k consecutive
pseudorandom numbers are selected by MUX block and
written into Reg_out.

During system initialization configuration bits are loaded
into EXOR network. This provides that the proposed
PLFSR can implement any feedback polynomial of degree
n. In a concrete case, primarily limited by the amount of
available logic blocks and input-output capacity of FPGA
chips, we can implement, using reconfiguration, any
polynomial of degree 32≤n .

The most complex part of PLFSR is the EXOR network,
shown in Fig. 4. It consists of k reconfigurable EXOR
blocks, each implemented as binary three of EXOR
circuits. Multiplexers, M1 to Mn, are used to switch on/off
a corresponding tap in the feedback loop. The outputs of a
configuration register are used for driving the select signals
of multiplexers M1 to Mn. The propagation delay of EXOR
network is equal to the propagation delay through one
multiplexer, plus n2log delay through EXOR circuits. It
is independent of the chosen feedback polynomial for the
given n.

Figure 4: The structure of EXOR network

IV. EXPERIMENTAL RESULTS
In order to verify our design, we have implemented both
PLFSR and standard LFSR in FPGA technology. For the
sake of verification we have implemented PLFSR that
generates two consecutive pseudo random sequences in
parallel. The PLFSR and logics were described at register
transfer level using VHDL. For FPGA implementation of
PLFSR an LFSR we have used Xilinx development CAD
tool ISE WebPack 13.1. Design verification was performed
using test benches intended for excitation of PLFSR and
LFSR. PLFSR and LFSR were implemented on FPGA
devices from Virtex-6 LP series (circuit xc6vlx75tl-1lf484).
The obtained results are given in Table 1, for standard
LFSR, and in Table 2 for PLFSR.

Table 1: Implementation results for standard LFSR

 No of
flip-
flops
in
LFSR

No of
occu-
pied
Slices

Best
case
achie-
vable
(ns)

Dynamic
Power
 (mW)

Quiescent
Power
(mW)

Total
Power
(mW)

Virtex6 LP
xc6vlx75tl-
1Lff484

32 71 1.701 6.65 781.19 787.84
24 52 1.885 5.99 781.18 787.17
16 38 1.888 5.62 781.17 786.80
8 18 1.722 4.51 781.16 785.67

201

Table 2: Implementation results PLFSR

 No of
flip-
flops

in
LFSR

No
of

occu-
pied
slices

Best
case

achie-
vable
(ns)

Dynamic
Power
(mW)

Quiescent
Power
(mW)

Total
Power
(mW)

Virtex6 LP
xc6vlx75tl-

1Lff484

32 113 1.883 11.17 781.26 792.43
24 90 1.924 11.65 781.26 792.91
16 57 1.768 9.19 781.23 790.42
8 35 1.735 7.69 781.21 788.89

According to the results given in Tables 1 and 2 we can
conclude the following:

− Hardware overhead of PLFSR compared to the
standard LFSR is from 50% (for the polynomial of
degree 16) up to 94% (for the polynomial of degree 8).
For the given polynomial degree n, hardware overhead
is independent of the chosen polynomial, i.e. active
taps.

− Dynamic power consumption depends of the chosen
primitive polynomial. For both PLFSR and standard
LFSR power consumption was estimated using the
same polynomial. The dynamic consumption ratio
between PLFSR and standard LFSR, varies from 1.63
(for the polynomial of degree 16) up to 1.94 (for the
polynomial of degree 24).

− Contribution of dynamic power consumption to the
total power consumption is approximately 1.5% which
implies that the impact of the PLFSR hardware is very
low with respect to the total hardware of the FPGA
chip.

Note that the system throughput of the PLFSR is two times
higher compared to the standard LFSR under the same
operating conditions, e.g. system clock.

V. CONCLUSION
Random number generation is an important application
area that is met in BIST devices for complex VLSI circuits.
In this case it is essential that the random numbers
generator be amenable to hardware implementation in
terms of area, high throughput rate, low-power dissipation,
and low complexity. LFSR are commonly used as pseudo
test pattern number generators in low overhead BIST
schemes. In this paper we have presented an efficient
parallel pseudo random number generator based on LFSR
which is used for fast testing the constituents (IP cores)
within a complex VLSI circuits. The proposed scheme was
implemented on VIrtex6 LP FPGA device (circuit
xc6vlx75tl-1lf484), running at clock speed of 200MHz,
while delivering two 32-bit random numbers per clock. The
reconfigurable hardware allows to implement any
polynomial of degree 32. In comparison to standard pseudo
random number generator based on LFSR, the proposed
solution characterizes 2x higher throughput rate, at cost
penalty of 94% of higher dynamic consumption and
hardware overhead in the worst case.

ACKNOWLEDGEMENT

This work was supported by the Serbian Ministry of
Education and Science, Project N0 TR-32009 –“Low
power reconfigurable fault-tolerant platforms”

REFERENCES
[1] Random number generation,

http://en.wikipedia.org/wiki/Random_number_generation,
available Mart 2013

[2] Wijesinghe W.A.S., Jayananda M.K., Sonnadara D.U.J.,
Hardware Implementation of Random Number Generators,
Proceedings of the Technical Sessions, Vol. 22, (2006), pp.
25-36, Institute of Physics-Sri Lanka, available at
http://www.ip-sl.org/procs/ipsl063.pdf , Mart, 2013

[3] Design for testability, Laung-Terng (L.-T.) Wang, chapter 3,
pp. 97- 172, in Electronic Design Automation: Synthesis,
Verification, and Test, Eds. Laung-Terng Wang,Yao-Wen
Chang, and Kwang-Ting (Tim) Cheng, Morgan Kaufmann
Pub., Burlington, MA, USA

[4] N. Jha, S. Gupta, Testing of Digital Systems, Cambridge
University Press, Cambridge UK, 2003.

[5] R. J. M. Nas, C. H. van Berkel, High Throughput, Low Set-

up Time, Reconfigurable Linear Feedback Shift Registers,
IEEE International Conference on Computer Design
(ICCD), 3-6 October 2010, pp. 31-37

[6] N. Ahmed, M. H. Tehranipour, M. Nourani, Low Power
Pattern Generation for BIST Architecture, Proceedings of the
2004 International Symposium on Circuits and Systems
(ISCAS’04), Vol. 2, 2004, pp. 689-692

[7] E. A. Bezerra, F. Vargas, M. P. Gough, Improving
Reconfigurable Systems Reliability by Combining Periodical
Test and Redundancy Techniques: A Case Study, Journal of
Electronic Testing: Theory and Applications, 17(2) (2001),
pp. 163-174

[8] A. Jhansirani, K. Harikishore, F. N. Basha, J. Poornima, M.
Jyothil, M. Sahithi, P. Srinivas, Fault Tolerance in Bit
Swapping LFSR Using FPGA Architecture, International
Journal of Engineering Research and Applications, 2(1),
(2012), pp. 1080-1087

[9] M. Lowy, Parallel implementation of Linera Feedback Shift
Registers for low power applications, IEEE Trans.on Circuits
and Systems-II: Analog and Digital Signal Processing, Vol.
43, No. 6, 1966, pp. 458-466

 [10] M.E. Hamid, and C.-I.H. Chen, A Note to Low-Power

Linear Feedback Shift Registers, IEEE Trans.on Circuits and
Systems-II: Analogue and Digital Signal Processing, Vol.
45, No. 9, 1998, pp. 1304-1307

202

