

Improving performance of geospatial data processing

using OpenMP
Natalija Stojanović

1
, Dragan Stojanović

2

Abstract – In this paper, high-performance processing of

geospatial data on multicore computer architecture is

considered. We use OpenMP (Open Multi-Processing) to

implement parallel processing of common Geographic

Information Systems (GIS) algorithms on multi.core processors.

This approach is used to accelerate application for map-

matching computation over large spatial datasets consisting of

moving points and road network segments. Also, the algorithm

for viewshed analysis is parallelized and performed on a

multicore system. Experimental evaluation validates our

approach and shows feasibility of high-performance computing

in GIS.

Keywords – high-performance processing, GIS, multicore

processors, OpenMP, map-matching, viewshed analysis

I. INTRODUCTION

Many today’s data and computing intensive applications

require more processing power then even before. Computer

games, database searching, Web search engines, financial and

economic forecasting, climate modeling, medical imaging,

etc. are application domains from a broad range of

applications that demand accelerating and performance

improvements [1]. One of the approaches for achieving

performance improvements, which has been used in last

decades, is to decrease the size of components used to build

computers. The technology progress has made possibility to

put billions of transistors on a single chip. As the size of

transistors has decreased their speed also has increased and

therefore the speed of overall integrated circuit has to be

increased. But, increasing of the transistor speed, as a major

approach of computer performance advance, has limited due

to heat-dissipation. As a consequence of heat dissipation

integrated circuit could become unreliable [2]. These

limitations have led to alternative strategies for creating more

powerful computers, and have made the use of parallelism to

become one of the crucial solutions for accelerating

applications. For example, chip manufactures have started to

produce processors with several computing units, called cores,

on one chip, that have independent control and have access to

the same, shared memory. Therefore, using multicore

processor has made each desktop or a laptop computer a

commodity parallel system. It is important that application

software must be able to make effective use of parallelism that

is present in available hardware resources. Software

developers can’t except that the increasing of computer power

can be automatically used by their application programs. This

is due to the fact that there is not appropriate automatic

transformer from a sequential program to a parallel program

that runs efficiently on the new architectures. Research in the

area of parallelizing compilers has shown that in many

situations it is not possible to extract enough parallelism from

sequential programs. Instead, a software developer has to

transform its software to run efficiently on new architectures.

Therefore, OpenMP (Open-Multiprocesing) was developed

to enable creation of parallel programs for shared-memory

multiprocessor platforms. OpenMP represents a set of

compiler directives, library routines, and environment

variables that provide programmer to tell the compiler which

instructions to execute in parallel. Also, OpenMP provides

programmer to define how to distribute them among the

threads that will run the code.

Many modern software applications, which are developed

to model real world, process a large amount of data and thus

cause long execution times on today’s computers. One such

application domain that could significantly benefit from

parallel processing is Geographic Information System (GIS)

that includes processing and analytics of massive geospatial

data (Big Geospatial Data). In this paper, we use OpenMP

parallel implementation for a map matching, a process of

integration of raw vehicle trajectory data to underlying road

network providing richer semantics in registered movement.

Also, the algorithm for viewshed analysis is parallelized and

accelerated on a multicore system. The performances of our

implementations have been evaluated. Experimental results

are examined and discussed.

II. HIGH-PERFORMANCE COMPUTING IN GIS

There are many ways to parallelize applications in order to

improve their performance. Just as there are several different

classes of parallel hardware, so there are different models of

parallel programming. Therefore, OpenMP (Open-

Multiprocesing) was developed to enable development of

parallel programs for shared-memory multiprocessor

platforms. Also, there are other high performance

parallel/distributed techniques and methods. For example,

MPI (Message Passing Interface) programming library use

multiple computers connected by high-speed LAN for

distributed computing, while OpenCL (Open Computing

Language) and CUDA (Compute Unified Device

Architecture) enable general-purpose applications to access

massively parallel Graphics Processing Units (GPU) for non-

graphical computing [2].

 OpenMP is not a new programming language. Rather it is a

notation that can be added to a sequential program in C, C++

1 Natalija Stojanović is with the Faculty of Electronic Engineering,

University of Nis, Aleksandra Medvedeva 14, 18000 Niš, Serbia

E-mail: natalija.stojanovic@elfak.ni.ac.rs
2Dragan Stojanović is with the Faculty of Electronic Engineering,

University of Nis, Aleksandra Medvedeva 14, 18000 Niš, Serbia

E-mail: dragan.stojanovic@elfak.ni.ac.rs

203

and Fortan to describe how the work can be shared among the

threads that execute on different processors or cores and to

order access to shared data as needed [3].

OpenMP supports the so-called fork-join programming

model. This approach assumes that the program begins

execution as a single thread, just like an ordinary sequential

program. The thread that executes this piece of code is called

initial (main) thread. Every time this thread encounters

OpenMP parallel construct during program execution, it

creates a set of threads. It then becomes a parent thread and

cooperates with other threads of the program execution. (Fig.

1). At the end of parallel construct only the initial (parental,

main) thread continues execution, interrupting the execution

of others.

Fig. 1. Fork-join programming model

OpenMP is expected that the developer specifies the

parallel parts of the program and the method of parallelism

applied. Thus, it provides a notation to indicate the area of

OpenMP program that should be executed in parallel. Also, it

is possible to obtain additional information on how this should

be achieved. OpenMP job is to classify the parts of the

program and create appropriate threads, as well as to allocate

a piece of code to execute by each thread. The method of

work division can have a significant impact on the program

performance.

Until recently, the application of high performance

computing techniques especially those available at PC

workstations and their networked clusters are mostly

neglected. Nowadays, with the increasing volume of

geospatial data required for computational- and data-intensive

problem solving in different GIS application domains, it has

emerged as a prominent research area [4], [5].

Akhter et al. [6] develop a methodology and propose

GRASS GIS module extension with parallel and distributed

computing for remote sensing image processing. Different

implementations for distributed GRASS modules are

examined on three different programming platforms (MPI,

Ninf-G and OpenMP) and their performance are presented.

Zhang in [7] considers a new HPC framework for

processing geospatial data in a personal computing

environment. He argued that modern personal computers

equipped with multi-core CPU and many-core GPU provide

excelent support for spatial data processing comparing with

cluster computing using MPI and newly emerged cloud

computing using MapReduce framework.

In our previous paper [8] we evaluate two

parallel/distributed architectures and programming models:

MPI (Message Passing Interface) over network of

workstations (NoW) and CUDA (Compute Unified Device

Architecture) on GPU in well-known problems in GIS: map

matching and slope computations. Experimental evaluations

indicate improvement in performance and shows feasibility of

using network of workstations and GPU for high performance

computing in GIS.

III. GEOSPATIAL DATA PROCESSING USING OPENMP

In this paper, we consider the spatial join between a large

dataset related to trajectories of moving objects and the

dataset on the road network on which they move in order to

perform map-matching. The result of the map-matching

process is a dataset containing points at the road segments that

are the closest to the appropriate trajectory points. This way

moving points that represent trajectories are matched to

corresponding road segments at which their movements occur.

In order to achieve map-matching, finding nearest road

segment in a series of segments for each point in the series of

points is needed. Points are given by their x and y coordinates

and segments are represented as polylines defined by the

coordinates of their vertices. Finding the nearest segment for

the corresponding point is performed by determining the

minimal distance between a point and corresponding segment.

Determining this minimal distance is presented in Fig. 2.

Figure 2. Determining minimal distance between point an a line

segment

Determining the shortest distance beetween a point and a

segment depends on a value of scalar dot between vectors NM

and MP, i.e. scalar dot between vectors MN and NP and is

calculated using following expression:























otherwise
BA

CByAx

NPMNyyxx

MPNMyyxx

d

,

0,)()(

0,)()(

22

00

2

02

2

02

2

01

2

01

where A = y1-y2, B = x2-x1 and C = x1y2-x2y1.

In order to accelerate the sequential execution of map

matching computation using parallel OpenMP techniques the

distribution of iterations to the corresponding threads is

performed. Within each iteration, the coordinates of the point

lying on the corresponding segment which is part of matched

trajectory, are found. Iterations are evenly distributed among

threads.

Viewshed analysis is one of the common algorithms in

terrain spatial analysis and use of terrain models. A viewshed

d

M(x1,y1)

N(x2,y2)

P(x0,y0)

d’

204

is the area(s) of the land/terrain surface that is visible from

one or more viewpoints. Viewshed analysis is used in a

variety of applications such as locating radio and TV

transmitters and cellular communication base stations for

maximum coverage, site selection for the forest lookout

stations and determining the areas of the resort that would be

visible from the new restaurant to determine its scenic

qualities.

The location and height of the viewpoint can change the

size and shape of a viewshed. Viewing parameters can also

include the viewing angle, the search distance and even the

tree height. The process of deriving viewsheds is called

viewshed or visibility analysis. A viewshed analysis requires

two input datasets. The first dataset represents a point layer

containing one or more defined viewpoints. The second input

dataset represents the land surface and can be defined as a

DEM (Digital Elevation Model) - a raster spatial data

containing elevation at spatial grid points, or a TIN

(Triangulated Irregular Network).

The viewshed analysis is performed following a series of

steps [9]. First, the location of the viewpoint is connected by a

line of sight or a ray to all specified location in the terrain.

Second, a set of intermediate points is derived along each

sightline. These intermediate points are determined from the

intersection between the sightline and the grid lines of the

elevation raster (DEM). Finally the computing algorithm

examines the elevations of the intermediate points, looking for

locations that are higher and thus visible from the viewpoint

or not (Fig. 3.) Higher points along this sightline obscure the

lower points that are behind them. The above procedure is

repeated for each grid point in the elevation raster as a target,

or only for specified locations of interest. In the parallel

OpenMP implementation the viewshed computing for the

whole set of grid points is evenly distributed among several

threads (e.g. 2, 4, 6, 8, 10, etc.) and thus can be performed on

separate cores in a multi core architecture. Using OpenMP the

effective use of a multicore architecture is achieved.

Fig. 3. Ray tracing for visibility analysis [9]

Through repeated ‘ray tracing’ a viewshed map is built.

This is a Boolean raster map that classifies raster cells into the

visible and invisible groups and indicates which areas of

terrain are visible or not from the location of interest. This

map is more effectively interpreted and understood by its

visualization over the terrain surface (Fig. 4.).

Various algorithms have been developed for computing

viewsheds and appropriate tools are available in several

contemporary commercial and open-source GIS software.

Such tools provide basic capabilities for setting up the

parameters for viewshed analysis but usually do not provide

choices for algorithms and information of adopted algorithm.

Fig. 4. Results of viewshed analyses for single point

Both map matching and viewshed analysis algorithms are

time consuming and computationally intensive operations that

are performed by applying relatively simple geometric

operations over massive vector or raster geospatial datasets.

As such these operations are well suited for speeding up by

employing parallel processing techniques in the computation.

In the next section we will examine application of OpenMP

on common GIS algorithms, map matching and viewshed

analysis to show improvement in performance and feasibility

of effective use of multicore architecture for high performance

computing in GIS.

IV. EXPERIMENTAL EVALUATION

In order to estimate proposed parallel solutions we used the

speedup as measure. Speedup (SP) is used to compare the

execution time of observed computation on p processors (TP)

to the execution time of sequential version (T1) i.e.

P
p

T

T
S 1

As the values of speedup values are indication of

processor's performance, the maximum obtained speedup can

be used to locate the best number of threads to be used for

corresponding application on observed architecture. In our

experiments for both applications we used Intel Core 2 Duo

T5870 2GHz CPU, 4GB of RAM, and Intel i7-2670QM

2,2GHz, 4GB of RAM multicore architecture. Intel Core 2

Duo has two cores, while Intel Core i7 has 4 cores with

implemented hyper-threading (HT) technology. With hyper-

threading technology, the instructions from two threads are

interleaved in the processor pipeline. Circuits of the processor

which store architectural state of processor are duplicated, but

the main execution resources are shared and not duplicated.

For the development of parallel application on multicore

computer, Visual Studio 2008 with included support for

OpenMP is used.

In the case of map-matching application two datasets are

used and stored in corresponding files. The first dataset

represents the set of segments (each polyline consists of

Sightlines

s

205

straight line segments) where each record contains segment

identifier and (x, y) coordinates of the segment endpoints. The

segment dataset contains 7035 records. The second dataset

contains the set of moving points where each record contains

point identifier, sequence number, the timestamp, (x, y)

coordinate of point and the current speed. The point dataset

consists of 329273 records. In the case of viewshed

application DEM with 1201x1201 points is used.

 Performance of map-matching application as well as

viewshed application, obtained for different number of threads

on the Intel Core 2 Duo and Intel Core i7 are shown in Table I

and Table II. In both tables the execution time (in seconds)

and speedup for corresponding thread count are shown.

TABLE I

EXPERIMENTAL RESULTS FOR MAP-MATCHING

algorithm

Core 2 Duo i7

threads TP SP threads TP SP

2 181,006 1,824 2 71,585 1,954

4 186,489 1,771 4 42,661 3,278

6 191,441 1,725 6 31,016 4,509

8 222,351 1,485 8 25,823 5,416

TABLE II

EXPERIMENTAL RESULTS FOR VIEWSHED

ALGORITHM

Core 2 Duo I7

threads TP SP threads TP SP

2 221,185 1,991 2 149,575 1,826

4 250,743 1,756 4 84,276 3,240

6 282,675 1,558 6 73,443 3,719

8 245,047 1,797 8 65,632 4,162

For Core 2 Duo the best performance results are when

using two threads, while performance decreases for both

algorithms when engaging more than two threads. For the

Core i7 processor, hyper-threading technology enhances the

speedup for applications with two to eight threads. After that,

it stagnates. The maximum speedup in the case of map-

matching is obtained for eight threads and its value is 5,416.

For the viewshed algorithm the maximum obtained speedup is

for eight threads and its value is 4,162. The speedup values

more than 4 are obtained due to HT technology.

From Tables I and II it can be concluded that the obtained

speedup makes this OpenMP implementations a candidate for

sequential acceleration solutions. As can be concluded from

the experimental evaluation, the use of OpenMP

implementation for map-matching algorithm and viewshed

analysis is a major challenge, and as a result gives satisfactory

performance improvements.

V. CONCLUSION

With advances in remote sensing, geosensor networks and

pervasive positioning, the amount of geospatial data that

needs to be processed and analyzed has exploded in recent

years. It leads to a rising interest in using high performance

parallel and distributed techniques for large scale geospatial

data processing and analysis. This paper shows that the

application of OpenMP parallel processing technique to

effectively employ multicore computer architecture could

improve the performance in executing common computation

and data intensive GIS algorithms, such as map matching and

viewshed analysis, over large scale raster and vector

geospatial data.

The future research will consider the usage of other HPC

techniques and platforms in GIS, such as cloud computing

(MapReduce/Hadoop) and the adaptation of various GIS

algorithms to cloud infrastructure.

VI. ACKNOWLEDGMENTS

Research presented in this paper is funded by Ministry of

education, science and technological development, Republic

of Serbia as part of the project ‘Environmental Protection and

Climate Change Monitoring and Adaptation’, Nr. III-43007.

REFERENCES

[1] S.Patel, Wen-mei W. Hwu, "Accelerator Architectures", IEEE

Micro, Vol. 28,4(2008), 4-12.

[2] P. Pacheco, "An Introduction to Parallel Programming", Morgan

Kaufman, 2011.

[3] B. Chapman, G. Jost, and R. Van Der Pas. "Using OpenMP:

portable shared memory parallel programming" MIT Press,

2008.

[4] A. Clematis, M. J. Mineter, and R. Marciano, “High

performance computing with geographical data”, Special issue

Parallel Computing, pp. 1275-1279, 2003.

[5] S. Shekhar, “High Performance Computing with Spatial

Datasets”, Invited talk, International Workshop on High

Performance and Distributed GIS, San Jose, California, 2010.

[6] S. Akhter, K. Aida and Y. Chemin, “GRASS GIS on High

Performance Computing with MPI, OpenMP and Ninf-G

Programming Framework”, Proceeding of ISPRS 2010, Japan.

[7] J. Zhang, “Towards Personal High-Performance Geospatial

Computing (HPC-G): Perspectives and a Case Study”,

International Workshop on High Performance and Distributed

GIS, pp. 3-10, San Jose, California, 2010.

[8] N. Stojanovic, D. Stojanovic, “High-performance computing in

GIS: techniques and applications”, International Journal of

Reasoning-based Intelligent Systems - IJRIS, accepted for

publication - in press, 2013

http://www.inderscience.com/info/ingeneral/forthcoming.php?jc

ode=ijris

[9] I. Heywood, S. Cornelius and S. Carver, “An Introduction to

Geographical Information Systems, 4th Edition”, Prentice Hall,

2012.

206

http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijris
http://www.inderscience.com/info/ingeneral/forthcoming.php?jcode=ijris

