

Web Services Performance on Commercial Virtual
Environment (VMware ESX)

Goran Velkoski1, Sasko Ristov2 and Marjan Gusev3

Abstract – In this paper, we realize several experiments to test
the impact of the virtualization technique on web service
performance. The experiments are realized on the VMware ESX
commercial virtual environment with two sample web services,
the first one that is memory demanding only and the second,
which is both memory demanding and computationally intensive.
Testing methodology is realized on two different environments:
host (bare metal) and guest (virtualized) used to share the
resources with Windows server and Java based web services.
The overall goal is to find the regions where the performance
drawbacks that arise due to virtualization are minimal.

Keywords – Virtualization, Apache Tomcat, Windows, JAVA

I. INTRODUCTION

The purpose of a virtualization environment is to improve
resource utilization by providing integrated operating platform
applications based on heterogeneous and autonomous
resources aggregation [1]. Virtualization is a popular
technique especially by being the baseline for cloud
computing [2]. Most cloud service providers use machine
virtualization to provide flexible and cost-effective resource
sharing [3]. Additionally, the multifarious resource demands
imposed virtualization usage on data centers (DCs) as an
infrastructure for data storage and deployment platform [4][5].

There are different levels of virtualization: Full
Virtualization, Paravirtualization, Operating System-level
Virtualization, and Native Virtualization [6].

Commercial and open source virtualization software
solutions are owned by some of the most popular ICT
companies such as VMware, Citrix, Microsoft etc. [7-9]. Each
virtualization software (VMware Infrastructure, Amazon
Elastic Compute Cloud – EC2 etc.) operates on top of a layer
of system software, called hypervisor or VMM (virtual
machine monitor), inserted between the guest operating
system and the underlying hardware [10].

Several hypervisors occupy all datacenters and cloud
computing solutions. Most popular are VMware ESXi, KVM,
Xen, Microsoft Hyper-V etc. [11-15].

The additional virtualization layer degrades the
performance compared to the base system especially for HPC
clusters [6][16]. In this paper, we analyze the performance of

two web services hosted in VMware virtual environment and
measure the performance drawback generated by the
additional virtualization layer. We conduct series of
experiments for compute and memory web services (WSs) on
the same hardware infrastructure hosted on bare metal and
virtualized environment. We have set the hypothesis that the
virtualized environment will degrade the WSs performance.

The rest of the paper is organized as follows. In Section 2,
we describe the methodology used for testing. The
experiments and the results are presented and discussed in
sections 3 and 4. In Section 5, we derive conclusions from the
results and we present our plans for future work.

II. THE TESTING METHODOLOGY

In this section, we present the testing methodology we used
to produce reliable testing results. We describe the testing
platform along with the infrastructure setup, and the
differentiated experiment design and test cases.

A. Experiment Environment

The testing environment is based on client-server web
service architecture. Figure 1 depicts both bare-metal and
virtualized experiment environments. For experimental
purposes we setup two distinctive server platforms on the
same infrastructure that consist of Intel(R) Xeon(R) CPU
X5647@2.93GHz with 4 CPU cores and 8GB RAM. We use
an Apache Tomcat 6.0 application server installed on
Windows Server 2008 to host our Java based WSs named:
Concat and Sort described in more detail in the next Section
II.B.

The difference between the scenarios depicted in Figure
1(a) and Figure 1(b) is the additional virtualization layer
which is included only in the virtualization scenario. The
servers are installed with VMware ESXi 4.1 and a virtual
machine (VM) instance is instantiated and allocated with
maximum available resources of the physical machine, i.e., 4
CPU cores and 8GB RAM.

The client uses SoapUI [17] to generate server load with a
different number of concurrent messages with various size.
The client software is deployed on a different machine
consisted of the same Intel(R) Xeon(R) CPU X5647
@2.93GHz with 4 cores and 8GB RAM and placed in the
same LAN segment with the servers to minimize network
latency and to assume that the measured SoapUI response
time is the same as the server response time [18], i.e., the
network latency can be neglected.

1 Goran Velkoski is with the Ss. Cyril and Methodius, Faculty of
Computer Sciences and Engineering, 16 Rugjer Boshkovikj, Skopje,
Macedonia, E-mail: velkoski.goran@gmail.com.

2 Sasko Ristov is with the Ss. Cyril and Methodius, Faculty of
Computer Sciences and Engineering, 16 Rugjer Boshkovikj, Skopje,
Macedonia, E-mail: sashko.ristov@finki.ukim.mk.

3 Marjan Gusev is with the Ss. Cyril and Methodius, Faculty of
Computer Sciences and Engineering, 16 Rugjer Boshkovikj, Skopje,
Macedonia, E-mail: marjan.gushev@finki.ukim.mk.

211

Figure 1. Experiment environments

B. Experiments and Test Cases Definition

We use two simple WSs, i.e., Concat and Sort. The former
is memory demanding WS which accepts two strings and
returns their concatenation. The latter accepts two strings and
returns their alphabetically sorted concatenation, which makes
it computationally intensive beside its memory demands. We
focus on simple WSs since our goal is not to analyze the
performance of the real life web services on n-tier application
where other factors will impact on the performance and
bottlenecks can appear, but focus only on the virtualization
impact on the performance.

We define four experiments in order to achieve the reliable
comparison, i.e., two web services hosted on two different
platforms:

• Experiment 1 – Concat WS on bare metal machine;
• Experiment 2 – Sort WS on bare metal machine;
• Experiment 3 – Concat WS on virtualized machine;
• Experiment 4 – Sort WS on virtualized machine.

Each experiment executes several test cases, such that each
test case loads the Apache web server with particular number
of concurrent messages and their size.

Each test case runs for 60 seconds. Web servers in VM
instances are loaded with N messages with parameters size of
PS kilobytes each, with variance of 0.5, that is, the number of
messages varies with N/2, starting from N, to 3N/2, and then
N/2. The range of parameters PS and N is selected such that
web servers in VM instances work in normal mode without
replying any error messages.

Parameter size PS is measured in KB for values 0, 1, 2, …,
9KB for Concat WS and 0, 1, …, 6 KB for Sort WS. Both
Concat and Sort WSs are loaded with N = 12, 100, 500, 750,
1000, 1250, 1500, 1750 and 2000 requests per second for each
parameter size PS.

C. Analysis metrics

In order to compare the WS performance based on the
response time (RT) measured in milliseconds we introduce the
Response Time Relation (RTR). We define RTR as a relation
between measured RT for WSs hosted on bare metal (bm) and
virtualized platforms (V).

V

bm

RT
RT

RTR = (1)

Furthermore, we will use RTR to identify the regions where
one or the other environment offers better performance for
memory demanding WS (Concat) and both memory
demanding and computation intensive WS (Sort).

III. EXPERIMENT RESULTS

In this section we present the results of the experiments
defined previously in Section II.B. Additionally, we analyze
the results based on both message sizes, and the number of
concurrent messages’ impact on the WS performance.

A. Experiment 1 - Concat WS hosted on bare metal machine

Figure 2 depicts the performance of Concat WS based on the
measured response time when hosted on bare metal machine,
for different PS with constant number N, and the opposite,
constant PS with varying the number of messages N.

We observe that both input parameters PS and N negatively
impact to the WS performance, i.e. increasing one of the
parameter will slightly degrade the Concat WS performance.
When messages with size of 9KB are used, the response time
fluctuates because we are near to our setup platform limit.

B. Experiment 2 - Sort WS hosted on bare metal machine

Figure 3 depicts how the Sort WS performance depends on
the input parameters PS and N while hosted on bare metal

212

Figure 2. Concat WS response time on bare metal machine

Figure 3. Sort WS response time on bare metal machine

machine. The performance is weighted while one of the
parameter is constant and the other varies.

In this experiment, the increase of N results with steeper RT
growth compared to the increase of PS. This is due to the
quick CPU usage increase because of the parallel invocation
of the computation and memory demanding web service. We
observe that Sort WS has greater response time than Concat
WS in range of seconds instead of milliseconds for Concat’s
response time.

C. Experiment 3 - Concat WS hosted on virtual machine

Figure 4 depicts the performance of Concat WS based on
measured response time when hosted on ESX powered virtual
machine. The performance is weighted out based on different
payload i.e. progressive parameter PS with constant N, and the
opposite, i.e., constant parameter PS with progressive N.

We observe that both input parameters PS and N slightly
impact the Concat WS performance, i.e. increasing one of the
parameters will slightly degrade the Concat WS performance
in a virtual environment.

B. Experiment 4 - Sort WS hosted on bare metal machine

Figure 5 depicts the results of the test cases in Experiment
4, i.e., the Sort WS performance while hosted on ESX

Figure 4. Concat WS response time in virtual environment

Figure 5. Sort WS response time on virtual machine

powered virtual machine instance. The performance is
weighted out based on different payload i.e. progressive
parameter PS with constant N, and the opposite, constant
parameter PS with progressive N.

In this experiment, the increase of N results in steeper RT
growth than the increase of PS. This is also due to the
increased CPU usage because of the parallel invocation of the
computation and memory demanding web service.

IV. DISCUSSION

In this section we analyze the impact of the virtualization
on the performance for a particular WS, by varying the
parameters PS and N. We measure the introduced variable
RTR for different values of parameters PS and N.

A. Virtualization Impact on Concat WS Performance

Figure 6 depicts the comparison of the experiments 1 and 3
by analyzing the parameter RTR for Concat WS.

Despite the hypothesis that bare metal environment has
better performance than virtual, we observe the opposite in the
most test cases, i.e., the virtualized environment is better for
the majority of the tests (RTR > 1). Small accidental regions
when executed using small number of WS invokes are slightly

213

Figure 6. RTR for Concat WS
below the RTR = 1. By increasing the parameters PS or N the
value of RTR parameter increases, i.e. the performance of the
virtual environment increases compared to bare metal.

B. Virtualization Impact on Sort WS Performance

This section compares the experiments 2 and 4 by
analyzing the parameter RTR for Sort WS, as depicted in
Figure 7. The results are similar as for Concat WS, i.e. the
virtual environment has better performance in most of the test
cases. Opposite to Concat WS, the value for RTR for Sort WS
is constant regardless of the parameters PS or N. We also
observe some test cases where local extremes exist for RTR
and RTR < 1.

V. CONCLUSION AND FUTURE WORK

In this paper we analyze the performance of memory
demanding Concat WS and both memory demanding and
computation intensive Sort WS. A correlation is determined
between the performance and the input parameters: the
number of messages and their size. Both web services are
hosted in two different environments, i.e., the bare metal and
virtual environment.

The results show that the performance of both web services
depends on both of the input parameters. The performance of
Concat WS slightly decreases compared to the performance of
Sort WS, for both environments.

We observed a phenomenon related to the comparison of
the environments. That is, despite the virtualization layer,
virtual environment provides better performance for almost
each test case (each number of concurrent messages and each
size) for both WSs.

We will analyze whether this phenomenon appear for other
web services, WSs, and operating systems.

REFERENCES

[1] Sahoo, J.; Mohapatra, S.; Lath, R., "Virtualization: A Survey on
Concepts, Taxonomy and Associated Security Issues,"
Computer and Network Technology (ICCNT), 2010 Second
International Conference on , vol., no., pp.222,226, April 2010

Figure 7. RTR for Sort WS

[2] PRNewswire, “Three Key Points Not to be Overlooked in Your
Virtual Strategy”, Apr 2013. [Online]. Available:
http://www.prnewswire.com/news-releases/three-key-points-
not-to-be-overlooked-in-your-virtual-strategy-119312769.html

[3] Wang, Guohui, and TS Eugene Ng. "The impact of
virtualization on network performance of amazon ec2 data
center." INFOCOM, 2010 Proceedings IEEE. IEEE, 2010.

[4] Bari, M., et al. "Data center network virtualization: A survey."
(2012): 1-20.

[5] Goiri, Íñigo, et al. "Energy-efficient and multifaceted resource
management for profit-driven virtualized data centers." Future
Generation Computer Systems 28.5 (2012): 718-731.

[6] Chaudhary, V., et al. "A comparison of virtualization
technologies for HPC." Advanced Information Networking and
Applications, 2008. AINA 2008. 22nd International Conference
on. IEEE, 2008.

[7] VMware, Apr 2013. [Online]. Available:
http://www.vmware.com/

[8] Citrix, Apr 2013. [Online]. Available: http://www.citrix.com/
[9] Microsoft, Apr 2013. [Online].

Available:http://www.microsoft.com/en-us/default.aspx
[10] Crosby, Simon, and David Brown. "The virtualization reality."

Queue 4.10 (2006): 34-41.
[11] VMware, “VMware vSphere Hypervisor™,” Apr 2013.

[Online]. Available: http://www.vmware.com/products/vsphere-
hypervisor/overview.html

[12] KVM, “Kernel Based Virtual Machine,” Apr 2013. [Online].
Available: http://www.linux-kvm.org/page/Main_Page

[13] Xen, “The Xen Project,” Apr 2013. [Online]. Available:
http://www.xen.org/

[14] Microsoft, “Microsoft Hyper-V Server 2012,” Apr 2013.
[Online]. Available: http://www.microsoft.com/en-us/server-
cloud/hyper-v-server/default.aspx

[15] Barham, Paul, et al. "Xen and the art of virtualization." ACM
SIGOPS Operating Systems Review 37.5 (2003): 164-177.

[16] Youseff, Lamia, et al. "Paravirtualization for HPC systems."
Frontiers of High Performance Computing and Networking–
ISPA 2006 Workshops. Springer Berlin Heidelberg, 2006.

[17] SoapUI, “Functional testing tool for web service testing,” Apr
2013. [Online]. Available: http://www.soapui.org/

[18] M. Juric, I. Rozman, B. Brumen, M. Colnaric, and M. Hericko,
“Comparison of performance of web services, ws-security, rmi,
and rmi–ssl,” Journal of Systems and Software, vol. 79, no. 5,
pp. 689–700, 2006.

214

