

Dataflow Computing: A Trend in HPC
Nenad Anchev1, Blagoj Atanasovski2, Sasko Ristov3and Marjan Gusev4

Abstract –There are several approaches used for high
performance computing. One is a computer cluster of tightly
connected computers linked over a LAN to appear as a single
system. Another one is Grid computing as a federation of loosely
coupled computer resources from multiple locations to be used
when needed. A number of problems exist that the von Neumann
principle of control flow yields poor results compared to a data
flow implementation of the same problem. Recent advances in
the area of creating accessible dataflow engines give us a reason
to revisit this idea. In this paper, we give an overview of current
available computing types for high performance and compare
their usability for certain problems against a dataflow
implementation that uses FPGAs.

Keywords –HPC, Data flow, FPGA, Grid

I. INTRODUCTION

There is an age old philosophical question, does technology
drive the development of society or is it the other way around.
In a similar way in the computing world we can pose the same
question, does the increase in computing power and
innovation of how computing is done leads to processing and
storing more data and work with more information or does the
need to process and derive more information from the
available data push the limits of innovation and results in
more and more powerful computers. Either way all can agree
that the amount of data processed every day is on a steep rise.
The limits on the data setssize that are feasible to process in a
reasonable amount of time were on the order of Exabyte [1].

Common knowledge taught as early as undergraduate
students in their first courses of Computer Architecture is the
rate at which computing speed and memory speed have
increased through time is very unbalanced. This has resulted
in creating solutions ranging from changing the inside
CPUarchitecture to use prefetching and caching, through
optimizing compilers for optimal reordering up to developing
entire paradigms for programming. To handle the amounts of
big data the possibilities of dataflow computing, which has the
data at its focus, should be taken in consideration.

In this paper we give an overview of dataflow computing,
compare it to other established HPC approaches and a way to
make it feasible.

II. COMPARISON OF HPC PLATFORMS

The mentioned platforms in this section are not different in
their computational architecture (except the GPUs) but more
or less in their organization and connection, on how the data is
transferred to the computing elements and the results gathered
after the computing is done. We cover the characteristics of 4
established HPC approaches: cluster, grid, cloud and general
purpose GPU computing.

A. Computer Clusters

A form of distributed system consisting of a set of
interconnected working and available computing nodes
(computers) connected with a local network. The activities of
the nodes are controlled by a special software middleware
layer that is present on all the nodes allowing the system to be
perceived as one cohesive computing unit. Computer clusters
rely on a centralized management approach in contrast to grid
computing. Typically clusters use the same or similar types of
machines, they are tightly coupled and use dedicated network
connections, share resources as a common home directory and
use an MPI implementation for passing messages between
nodes. [2]

The benefits are the low cost, complexity for configuring
and operating them because of the off-the-shelf components
that can be added as needed, which helps with the elasticity
required to add or remove resources proportional to the
workload. Tightly coupled clustersconnected with high speed
networks are optimized to create supercomputers. The
benefits of low cost and elasticity are those compared to
buying monolith supercomputers where many processors are
connected on an ultra-speed bus. Figure 1 depicts a Beowulf
cluster, a model created by identical nodes from commodity-
grade hardware networked in a LAN.

The programming model relies on the use of MPI for using
parallelism, sending and gathering messages. Programs
created for a single processor must be rewritten to include the
MPI directives, but are simpler than creating programs for a
custom supercomputer operating system.

B. Grid computing

The federation of computer resources from multiple
locations to reach a common goal. The name is an analogy of
the electrical power grid. It can be thought of as a distributed
system similar to cluster computing whose nodes are more
loosely coupled, heterogeneous and dispersed on distant
locations. The idea is to create parallel computing based on
complete computers connected to a private or public network
via standard interfaces instead of the approach of traditional
supercomputers.

1Nenad Anchev is with the University Sts Cyril and Methodius,
Faculty of Computer Science and Engineering,RugjerBoshkovikj 16,
Skopje, Macedonia, anchev.nenad@students.finki.ukim.mk.

2Blagoj Atanasovski is with the University Sts Cyril and
Methodius, Faculty of Computer Science, RugjerBoshkovikj 16,
Skopje, Macedonia, atanasovski.blagoj@students.finki.ukim.mk

3Sasko Ristovis with the University Sts Cyril and Methodius,
Faculty of Computer Science and Engineering, RugjerBoshkovikj 16,
Skopje, Macedonia, E-mail: sashko.ristov@finki.ukim.mk.

4Marjan Gusevis with the University Sts Cyril and Methodius,
Faculty of Computer Science and Engineering,RugjerBoshkovikj 16,
Skopje, Macedonia, E-mail: marjan.gushev@finki.ukim.mk.

219

.A
form
adm
com
con
prob

T
com
com

C. C

T
dom
com
reso
Inte
and
tena
the
rare
com
con
app
bac
to b

D. G

G
Pro
the
gen
doin
with
GPU
stat
piec
GPG

A characteris
med from co
ministrative do
mputing powe
ntrol over the h
blem with tru

The programm
mputing with
mmunication.

Cloud comput

The disadvan
mains and un
mputing is u
ources deliver
ernet. Charact
d scalability o
ancy for shari
management

ely used for H
mputing powe
nstant price o
plications keep
k would accu

buy and implem

General Purp

GPGPU has
cessing Units
CPU. This ki

neration GPUs
ng operations
h streams of
Us process d
ic data. Multi
ce of memor
GPU applicat

stic of grid c
omputing res
omains, allow
er. A disadv
hardware, so t
stworthiness.

ming model is
more thought

ting

ntages of ha
guaranteed up

used. It repr
red as a servi
teristics of clo
of resources v
ing resources
of the platfor
HPC reasons.
er is needed f
of sending th
ping it in the

umulate over t
ment cluster.

ose computing

been define
to handle com

ind of comput
s that offer a
on arbitrary b

f records tha
data independ
iple inputs an
ry cannot be
tions require l

computers is
sources belon

wing them to s
vantage is th
there is no upt

the sameas th
t given to dec

aving multip
ptime can be
esents the u
ice over a ne
oud computin
via dynamic p

and costs, an
rm is taken car
. It can be u
for short peri
he huge data
e cloud and s
time to match

g with GPUs

ed as the u
mputing tradit
ting can be do
complete set

bits. GPUs are
at require sim
dently so ther
nd outputs can
e both readab
large data set

Figur

that they ca
nging to mu
share the cost

he lack of ce
time guarante

he model for cl
creasing inter-

ple administr
e avoided if c
use of comp
etwork, usuall
g are the elas

provisioning,
nd in public c
re of. The Clo
sed when a l
ods, otherwis

a needed by
shifting the re
h the price req

(GPGPU)

use of Grap
tionally handl
one only on n
of instruction

e designed to
milar computa
re is no share
n be defined,
ble and write
s, high parall

re 1. Beowulf c

an be
ultiple
ts and
entral

ee and

luster
-node

rative
cloud

puting
ly the
sticity
multi
louds

oud is
lot of
se the

HPC
esults

quired

phical
ed by
newer
ns for
work
ation.
ed or
but a

eable.
elism

and
acce
prog
NVI
[5].
appli
used
send
mem
proc
end t

Da
archi
need
tradi
instr
argu
majo
mach
ones
the d
mem
desig
them
instr
Ther
the i
depe

Da
persp
dema
mod
data

cluster

minimal depe
ss latency a

gramming pla
DIA that is im
Figure 2 show
ication where

d to run an a
ding the data f
mory and ins

essing to do.
the result is co

III. W

ataflow comp
itecture and a

ded for that
itional contro
ructions is det
ments of the

or research to
hines that hav
s. Static design
dependencies.

mory, where th
gns were supp

m into CAM,
ruction are av
re were severa
inability to bu
endencies of a
ataflow can b
pective, a typ
and for proc
el that has b
through high-

endency betwe
and achieve
tform and pr

mplemented in
ws the proces

e the numerou
application in
from the main
structing the
Each of the c
opied back to

WHAT IS DATA

puting can b
s a completely
architecture.
ol flow arc
termined base
instructions.

opic in 1970s
ve been resear
ns use conven
. Dynamic de
hey use tags
posed to exec
 when all of

vailable the in
al problems w
uild a large en
an executing p
be also viewe
pe of softwar
essing of lar
een designed
-speed compu

een elements
speedup. A

rogramming m
n their GPU p
ssing flow in
us cores of th

parallel. The
n memory to

e GPU cores
cores runs in p
the main mem

AFLOW COM

be seen both
y different pro
It is a direc
hitecture. Th
ed on the ava
Dataflow arc
s. The two t
rched were st

ntional memor
esigns use co
to facilitate p
cute program
f the operand
nstruction is

with these arch
nough CAM
rogram.

ed from a pro
re architecture
rger data qua

to handle en
utations.

to avoid mem
popular par

model created
products is CU

a typical CU
he GPU woul
e flow begins
the graphics
s what kind
parallel and in
mory.

MPUTING

h as a diffe
ogramming m
ct contrast to
he execution
ailability of i
chitectures we
types of data
tatic and dyna
ry addresses to
ontent-address
parallelism. T
s by first loa
ds tagged for
marked as re
hitectures, suc
to contain all

ogramming m
e. The increa

antities requir
normous flow

mory
rallel
d by
UDA
UDA
d be
s by
card

d of
n the

erent
model

 the
n of
nput

ere a
flow
amic
o tag
sable
hese

ading
r an

eady.
ch as
l the

model
asing
res a

ws of

220

Figure 2. Processing flow on CUDA[3]

The idea of dataflow computing has been hindered for

decades by the success of the supercomputers. The drawbacks
of dataflow computing, namely the specialized hardware
needed for every different program, instead of the
programmable nature of the control-flow computers, meant
that dataflow computing was unfeasible compared to control
flow computing.

With the appearance of field programmable gate arrays, the
idea for dataflow computing was given a rebirth. The FPGAs
property of “reprogrammable hardware” was crucial for the
rebirth of this idea.

So, let’s compare the two paradigms. On one side we have
the well-known control flow architecture, CPU and main
memory, connected with a bus. Memory is filled with
instructions from a compiled program written in some
programming language (control logic), and application input
data. During the execution of a program, instructions and data
are being transferred to the processor and being executed. The
output data is then returned back to the memory. The data-
flow architecture with FPGAs (Maxeler) works as follows:
First, a data-flow code is being written. The code is compiled
to a configuration file, which describes the way in which
FPGAs are configured. Then the FPGAs are configured, and
they are ready to do the computing, as soon as data arrives in
them. In the execution part, input data is streamed into the
dataflow engine, the engine does all the computation
according to the configuration, and the output is streamed
back to the memory.

As we can notice, in dataflow computing there is no
instruction stream (program code) in the stage of execution.
Instead, instructions are “written” on the FPGA at the
compilation stage. This is the main advantage of the data-flow
computing, as it gets rid of all the problems associated with
the “unpredictable” instruction stream, so all the techniques
for resolving these problems in modern processors become
obsolete. This is one of the main contributors for the achieved
speedup, compared to control flow architectures.

The other obvious advantage of this technology is the high
level of optimization and fine tuning that an FPGA allows.
Here we are not limited by the bottlenecks of modern

computers, and we have a relatively greater degree of freedom
in “programming” our own hardware, allowing us to boost
performance and speedup algorithms many times. However,
this can be also viewed as a drawback. Dataflow
programming and FPGA configuration is a relatively new
paradigm, which requires a different way of thinking and
coding, and very few people are able to successfully program
dataflow logic.

The only major bottleneck in dataflow computing is the
transfer of data streams onto, and from the dataflow engine.
As Maxeler dataflow engines have to be attached to a regular
computer via PCI Express bus, data transfer rates are limited.
This bottleneck reduces the usability of dataflow engines only
for compute intensive algorithms, with small I/O.

Another bottleneck of the dataflow computing, which
comes from the immaturity of the FPGA technology, is the
low working frequency of the FPGAs, which currently is in
the range of 200MHz. This is 10 times lower compared to
modern processors, which slightly lowers the potential of
speedup at dataflow engines. However, this may be also seen
as an advantage, as power consumption is much lower at these
frequencies than at the GHz order at the modern processors.
Maxeler states that power consumption per computation is 30
times lower at their technologies compared to standard control
flow multiprocessor. With the advance of the FPGA
technology, working frequencies may be increased, but the
power consumption is still predicted to be lower than
conventional computers.

IV. DATAFLOW PROGRAMMING

The dataflow computing platform, as a computing platform,
was already presented in the previous section. Here we are
going to present the dataflow platform as a programming
paradigm. As we mentioned in the previous section, dataflow
computing lacks the existence of instructions as defined in the
well-known computer architectures. Instead, we are
configuring FPGAs to manipulate the input data streams, and
produce the output stream. The code is compiled similarly, but
the lowest level of code here describes the configuration of
the FPGAs, which are then being “programed” to solve the
particular problem. After the configuration is finished, the
dataflow engine may be running, when the input data streams
are provided. Here, we are going to describe the programming
paradigm of a particular dataflow implementation, Maxeler’s
dataflow engines.

Maxeler offers a specialized Java-like programming
language for dataflow engine programming. It offers a
modified Eclipse IDE, MaxCompiler which compiles the
high-level programming code down to FPGA configuration
files, and MaxelerOS, which has the task to deal with the
FPGA configuration, and communication of the dataflow
engine with the host computer. Except for the Java-like
dataflow code, a C code is required for the host part. The C
code has the task to transfer data to, and from the dataflow
engine, and possibly do some minimal computation to avoid
being idle while the dataflow engine does the bulk of the
computation.

221

T
mai
desc
be p
are
whi

W
tran
data
pos
whi
mem
Con
kern
cert

C
sim
prog
to th
part
spec
con
from
eng

W
that
mem
so t
How
slow
com
gap

E
poin
opti

cyc
cyc
data
tran
con
than

The Java-like
in objects: ker
cribe what ki
put in the dat
going to be

ich part of the
When a kerne
nslation of n
aflow logic.
sible, or prog
ich temporary
mory, and th
nditional state
nels allow el
tain elements
Coding a kern

milar to codin
gramming. W
he main func
ticular functi
cifically, the

nnecting and
m/to particul
gine memory,
When conside
t the working
mory, and inte
there are no
wever, comm
wer, which th
mputation cyc
p in the conven
Except for redu
nts that shou
imizing a Max

- Findin
les. This usua
le should be
aflow paradig
nslation in d
nversion may
n conventiona

dataflow prog
rnels, and ma
nd of hardwa
taflow engine
done on the d

e data streams
el programmed
nested loops

Nested loops
grammed wit
y memorize p
hen stream th
ements pose le
lements that
of the stream,
nel in dataflo
ng a functio

While on the ot
tion in a code
ions, and the

manager her
synchronizin

ar kernels,
and other add
ring the data
g frequencies
er-dataflow co
wasted cycle

munication wit
he dataflow en
cles, similar to
ntional compu
ucing the com

uld be consid
xeler dataflow
ng a convenie
ally implies th
rethinked aga
gm. This is
dataflow logi

even produc
al computers.

Figure 3. C

gramming co
anagers. Kerne
are building b
e, how and w
data streams,
will these blo
d, the most d
and conditio

s are unrolle
th counters a
part of the str
hen again the
ess challenge
conditionally
, while ignorin
ow programm
n or routine

ther hand, the
e that usually
en collects t
re deals only
ng input and
host machin

ditional dataflo
streams, it is

s of multiple
ommunication
es or synchron
th the host m
ngine resolves
o filling the

uters.
mmunication w
dered while

w engine are th
ent way of tr
hat the whole
ain in order to
the hardest

ic. Unsuitabl
ce performanc

omparison of c

de consists o
els are object

blocks are goi
which computa

and when an
ocks operate.
difficult part i
onal statemen
d, whenever
nd stream of
reams in the
em to the ke
to be translate
select or pr

ng others.
ming is some
e in control
manager is si
dispatches da

the results.
y with the ta
d output str
e, local data
ow engines if
s important to

kernels, data
n buses are sim
nization prob

machine is us
s by adding e
processor-me

with the host,
programming

he follows:
ransforming n
e logic of a n
o comply wit
part of the

e or non-op
ces that are w

ontrol flow and

f two
s that
ing to
ations
nd on

is the
nts to

it is
ffsets,
local

ernel.
ed, as
rocess

ewhat
flow

imilar
ata to
More
sk of
reams
aflow
such.

o note
aflow
milar,

blems.
sually
empty
emory

other
g and

nested
nested
th the
code

ptimal
worse

poss
comp
impl
much

Th
in da
facto
expe
logic

Di
exist
custo
their
inter
the m
comp
disad
prog
the s
ideal

[1]

[2]

[3]

[4]

[5]

d data flow arch

- Using
ible. The nu
parators on
lementation th
h greater effic
he way of ret
ataflow logic i
or that defines
erience and th
c allow a prog

ifferent appro
t. All of them
omers should
r price, a
roperability, p
most common
puting, thei
dvantages. W

gramming mod
same goal. D
l platform. It i

Francis, Matth
development of
Baker, Mark,
Encyclopedia
45.Supplement
The image is p
taken
en.wikipedia.or
as seen on 6.4.2
The i
www.maxeler.c
10.4.2013
NVIDIA
Pagewww.nvid

hitectures [4]

as much as
umber of u
an FPGA

hat uses most
ciency.
thinking and r
is the most im

s the achieved
he higher leve
grammer to wr

V. CON

oaches for to
m offer huge co

select the com
availability,

portability, cos
n platforms us
ir architectu
e also presen
del as a new

Dataflow com
is cost and per

REFER

hew (2012-04-0
f exabyte proce
et al. "Clust
of Comput

t 30 (2002): 87-
published unde

rg/wiki/File:CU
2013.
image
com/technology

dia.com/object/c

parallelism a
used adders,

is limited,
t of the availa

reprogrammin
mportant (or pr

performance
el of understan
rite an optima

NCLUSION

oday’s hunger
omputing pow
mputing platfo

performanc
st etc. In this
sed today for
ure, use,
t the dataflow
platform tha

mputing emerg
rformance eff

RENCES

02). "Future tel
essing". Retriev
er computing
ter Science
-125.
er the Creative

UDA_processin

is ta
y/dataflow-com

CUDA
cuda_home_new

and pipelining
multipliers,
and finding

able ones imp

ng the applica
robably, the o
and speedup.

nding of data
l dataflow cod

r of computa
wer. However
orms accordin
e, adaptabi
paper we pre
high performa
advantages

w architecture
t can be used

ges as one of
fective.

escope array d
ved 2012-10-24

and applicatio
and Techno

Commons lice

ng_flow_(En).P

aken
mputing/ as see

H
w.html

g as
and

g an
plies

ation
only)

The
flow
de.

ation
r, the
ng to
ility,
esent
ance
and

 and
d for
f the

drives
.
ons."
ology

ence,
from
NG

from
en on

Home

222

