
 
 
 

Dataflow Computing: A Trend in HPC 
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Abstract –There are several approaches used for high 
performance computing. One is a computer cluster of tightly 
connected computers linked over a LAN to appear as a single 
system. Another one is Grid computing as a federation of loosely 
coupled computer resources from multiple locations to be used 
when needed. A number of problems exist that the von Neumann 
principle of control flow yields poor results compared to a data 
flow implementation of the same problem. Recent advances in 
the area of creating accessible dataflow engines give us a reason 
to revisit this idea. In this paper, we give an overview of current 
available computing types for high performance and compare 
their usability for certain problems against a dataflow 
implementation that uses FPGAs. 
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I. INTRODUCTION 

There is an age old philosophical question, does technology 
drive the development of society or is it the other way around. 
In a similar way in the computing world we can pose the same 
question, does the increase in computing power and 
innovation of how computing is done leads to processing and 
storing more data and work with more information or does the 
need to process and derive more information from the 
available data push the limits of innovation and results in 
more and more powerful computers. Either way all can agree 
that the amount of data processed every day is on a steep rise. 
The limits on the data setssize that are feasible to process in a 
reasonable amount of time were on the order of Exabyte [1].  

Common knowledge taught as early as undergraduate 
students in their first courses of Computer Architecture is the 
rate at which computing speed and memory speed have 
increased through time is very unbalanced. This has resulted 
in creating solutions ranging from changing the inside 
CPUarchitecture to use prefetching and caching, through 
optimizing compilers for optimal reordering up to developing 
entire paradigms for programming. To handle the amounts of 
big data the possibilities of dataflow computing, which has the 
data at its focus, should be taken in consideration.  

In this paper we give an overview of dataflow computing, 
compare it to other established HPC approaches and a way to 
make it feasible. 

II. COMPARISON OF HPC PLATFORMS 

The mentioned platforms in this section are not different in 
their computational architecture (except the GPUs) but more 
or less in their organization and connection, on how the data is 
transferred to the computing elements and the results gathered 
after the computing is done. We cover the characteristics of 4 
established HPC approaches: cluster, grid, cloud and general 
purpose GPU computing. 

A. Computer Clusters 

A form of distributed system consisting of a set of 
interconnected working and available computing nodes 
(computers) connected with a local network. The activities of 
the nodes are controlled by a special software middleware 
layer that is present on all the nodes allowing the system to be 
perceived as one cohesive computing unit. Computer clusters 
rely on a centralized management approach in contrast to grid 
computing. Typically clusters use the same or similar types of 
machines, they are tightly coupled and use dedicated network 
connections, share resources as a common home directory and 
use an MPI implementation for passing messages between 
nodes. [2]  

The benefits are the low cost, complexity for configuring 
and operating them because of the off-the-shelf components 
that can be added as needed, which helps with the elasticity 
required to add or remove resources proportional to the 
workload. Tightly coupled clustersconnected with high speed 
networks are optimized to create supercomputers. The 
benefits of low cost and elasticity are those compared to 
buying monolith supercomputers where many processors are 
connected on an ultra-speed bus. Figure 1 depicts a Beowulf 
cluster, a model created by identical nodes from commodity-
grade hardware networked in a LAN. 

The programming model relies on the use of MPI for using 
parallelism, sending and gathering messages. Programs 
created for a single processor must be rewritten to include the 
MPI directives, but are simpler than creating programs for a 
custom supercomputer operating system. 

B. Grid computing 

The federation of computer resources from multiple 
locations to reach a common goal. The name is an analogy of 
the electrical power grid. It can be thought of as a distributed 
system similar to cluster computing whose nodes are more 
loosely coupled, heterogeneous and dispersed on distant 
locations. The idea is to create parallel computing based on 
complete computers connected to a private or public network 
via standard interfaces instead of the approach of traditional 
supercomputers. 
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Figure 2. Processing flow on CUDA[3] 
 
The idea of dataflow computing has been hindered for 

decades by the success of the supercomputers. The drawbacks 
of dataflow computing, namely the specialized hardware 
needed for every different program, instead of the 
programmable nature of the control-flow computers, meant 
that dataflow computing was unfeasible compared to control 
flow computing. 

With the appearance of field programmable gate arrays, the 
idea for dataflow computing was given a rebirth. The FPGAs 
property of “reprogrammable hardware” was crucial for the 
rebirth of this idea. 

So, let’s compare the two paradigms. On one side we have 
the well-known control flow architecture, CPU and main 
memory, connected with a bus. Memory is filled with 
instructions from a compiled program written in some 
programming language (control logic), and application input 
data. During the execution of a program, instructions and data 
are being transferred to the processor and being executed. The 
output data is then returned back to the memory. The data-
flow architecture with FPGAs (Maxeler) works as follows: 
First, a data-flow code is being written. The code is compiled 
to a configuration file, which describes the way in which 
FPGAs are configured. Then the FPGAs are configured, and 
they are ready to do the computing, as soon as data arrives in 
them. In the execution part, input data is streamed into the 
dataflow engine, the engine does all the computation 
according to the configuration, and the output is streamed 
back to the memory. 

As we can notice, in dataflow computing there is no 
instruction stream (program code) in the stage of execution. 
Instead, instructions are “written” on the FPGA at the 
compilation stage. This is the main advantage of the data-flow 
computing, as it gets rid of all the problems associated with 
the “unpredictable” instruction stream, so all the techniques 
for resolving these problems in modern processors become 
obsolete. This is one of the main contributors for the achieved 
speedup, compared to control flow architectures. 

The other obvious advantage of this technology is the high 
level of optimization and fine tuning that an FPGA allows. 
Here we are not limited by the bottlenecks of modern 

computers, and we have a relatively greater degree of freedom 
in “programming” our own hardware, allowing us to boost 
performance and speedup algorithms many times. However, 
this can be also viewed as a drawback. Dataflow 
programming and FPGA configuration is a relatively new 
paradigm, which requires a different way of thinking and 
coding, and very few people are able to successfully program 
dataflow logic. 

The only major bottleneck in dataflow computing is the 
transfer of data streams onto, and from the dataflow engine. 
As Maxeler dataflow engines have to be attached to a regular 
computer via PCI Express bus, data transfer rates are limited. 
This bottleneck reduces the usability of dataflow engines only 
for compute intensive algorithms, with small I/O. 

Another bottleneck of the dataflow computing, which 
comes from the immaturity of the FPGA technology, is the 
low working frequency of the FPGAs, which currently is in 
the range of 200MHz. This is 10 times lower compared to 
modern processors, which slightly lowers the potential of 
speedup at dataflow engines. However, this may be also seen 
as an advantage, as power consumption is much lower at these 
frequencies than at the GHz order at the modern processors. 
Maxeler states that power consumption per computation is 30 
times lower at their technologies compared to standard control 
flow multiprocessor. With the advance of the FPGA 
technology, working frequencies may be increased, but the 
power consumption is still predicted to be lower than 
conventional computers. 

IV. DATAFLOW PROGRAMMING 

The dataflow computing platform, as a computing platform, 
was already presented in the previous section. Here we are 
going to present the dataflow platform as a programming 
paradigm. As we mentioned in the previous section, dataflow 
computing lacks the existence of instructions as defined in the 
well-known computer architectures. Instead, we are 
configuring FPGAs to manipulate the input data streams, and 
produce the output stream. The code is compiled similarly, but 
the lowest level of code here describes the configuration of 
the FPGAs, which are then being “programed” to solve the 
particular problem. After the configuration is finished, the 
dataflow engine may be running, when the input data streams 
are provided. Here, we are going to describe the programming 
paradigm of a particular dataflow implementation, Maxeler’s 
dataflow engines. 

Maxeler offers a specialized Java-like programming 
language for dataflow engine programming. It offers a 
modified Eclipse IDE, MaxCompiler which compiles the 
high-level programming code down to FPGA configuration 
files, and MaxelerOS, which has the task to deal with the 
FPGA configuration, and communication of the dataflow 
engine with the host computer. Except for the Java-like 
dataflow code, a C code is required for the host part. The C 
code has the task to transfer data to, and from the dataflow 
engine, and possibly do some minimal computation to avoid 
being idle while the dataflow engine does the bulk of the 
computation. 
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