
 
 
 

Evaluation of smartphone capabilities for efficient 

physical activity recognition 
Nikola Jajac

1
, Bratislav Predic

2
 and Dragan Stojanovic

3 

Abstract – This paper considers if mobile devices are capable 

to perform activity recognition locally in an efficient way. Within 

the paper an application for activity recognition based on 

accelerometer embedded  in a mobile phone is described. An 

evaluation of the impact that the application has on device 

performance was performed. It was concluded that mobile 

devices can perform activity recognition in an efficient way, 

without significant decrease in mobile device performance. 
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I. INTRODUCTION 

Activity recognition fits within the bigger framework of 

context awareness. Context-aware systems take into account 

the current state of the user, as well as her surroundings, 

enabling a mobile device and application to adapt in an 

appropriate manner. 

Initially, context-aware systems used location as the only 

aspect that defined user context. With the development of 

low-cost and low-power sensors (such as accelerometers, 

gyroscopes, digital compasses, light sensors etc.) and their 

integration into modern mobile devices, in combination with 

advances in machine learning, it is possible to create a much 

richer model of user context.  

Activity of a user represents an important aspect of a 

context, because it directly impacts her ability to interact with 

the mobile device and applications. Information about the user 

activity enriches the description of a user context and in that 

manner enables the system to better adapt its services and 

resources to user context, which can be performed even 

without any explicit action from the user. In this way the user 

can stay more focused on the task at hand. 

A sensor whose data is probably the most useful in activity 

recognition is the acceleration sensor. The acceleration sensor 

is a sensor which measures acceleration along one, two or 

three axes. Since the acceleration sensor also detects 

acceleration due to gravity, it can be used for orientation 

detection, which is useful information for activity recognition. 

The greatest possibilities for application of activity 

recognition systems lay in the healthcare domain. For 

example, such systems can be used for elderly care support or 

for long-term health/fitness monitoring [1]. Current methods 

for tracking activities, like paying a trained observer or 

relying on self-reporting are time and resource consuming 

tasks, and are error prone. An automatic system for 

recognizing activities could help reduce errors that arise from 

previously mentioned methods. Also, such system would 

enable its users to go about their daily routines, while the data 

collection and processing are done in the background, and do 

not interfere with current user activities. 

Another possibility for application is in the social 

networking domain. Social networks have an important place 

in today's society. Existing communication services enable 

simple exchange of text, images, videos etc., while by using 

data from sensors, a much richer user context could be shared 

with friends in a more natural and, for the user, simpler way. 

Automatic activity recognition would enable users to share 

their current activity with their friends over a social network 

without interrupting the user in her activity, consequently 

moving the interaction between social networks users to a new 

level. 

Activity recognition by using data from an acceleration 

sensor can be performed in two ways. The first one implies 

transfer of data from the acceleration sensor to a server, where 

all of the further processing is done. In this way processor 

power of a server is utilized and also device battery 

consumption is decreased, since all of the processing is 

transferred to the server. Disadvantage of this approach is the 

necessity to transfer data to the server, and since it is a 

centralized approach, question of scalability arises. The 

second approach implies that the whole activity recognition 

process is performed on the mobile device itself. In this case 

there is no data transfer to a server, the system is maximally 

scalable since the data from every device is processed on the 

device itself, so it makes no difference how many devices 

perform activity recognition simultaneously. On the other 

hand, there is a question whether mobile devices have enough 

resources to perform activity recognition seamlessly, or  it 

would cause significant increase in battery consumption and 

processor load, up until a level when the user could not 

continue to use other functionalities of the mobile device in a 

way he is accustomed to.  

This paper explores the possibility of activity recognition 

directly on a mobile device in real time. As a test platform 

Android operating system was used. The main reason for the 

selection of Android operating system was the fact that by 

September 2012. 500 million Android devices were activated 

[2], and that 1.3 million new devices are activated every day, 

which represents a huge base of potential users for an activity 

recognition system. As a part of this paper a demo application 

for activity recognition was developed and an evaluation of 

the impact that the application has on a mobile device 
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performance was performed, to determine whether a typical 

mobile device can perform activity recognition in an efficient 

way. The rest of the paper is organized as follows: section 2 

provides an overview of related work on activity recognition, 

with special regard to a paper which preceded this one and 

whose results were used in the development of the application 

for activity recognition. Section 3 describes the developed 

application for activity recognition on Android mobile 

devices. Section 4 presents the evaluation of impact that the 

developed application has on device performance. Finally, 

section 5 gives the conclusions about the paper. 

II. RELATED WORK 

In recent years there has been a lot of research related to 

recognizing activities from accelerometer data. In [3] authors 

used data from 5 biaxial accelerometers worn simultaneously 

on different parts of the body. Used accelerometers could 

detect acceleration up to ±10G. Accelerometers were mounted 

onto hoarder boards and firmly attached to different body 

parts. Data was collected from 20 subjects performing various 

everyday tasks without researcher supervision. The following 

features were computed on sliding windows of accelerometer 

data: mean, energy, frequency-domain entropy and 

correlation. A number of classifiers were trained and tested 

with the calculated data, where decision trees showed the best 

result, recognizing activities with an accuracy of 84%. 

Ravi et al. in [4] attempted to perform activity recognition 

using a single triaxial accelerometer worn near the pelvic 

region. Data was collected by 2 subjects performing 8 

different activities. Similarly to [3] the features were 

computed using the sliding window technique. Four features 

were extracted: mean, standard deviation, energy and 

correlation. Extracted features were used to train and test 5 

base-level classifiers, and in addition to that, 5 meta-level 

classifiers. Authors concluded that meta-level classifiers in 

general outperform base-level classifiers and that plurality 

voting, which combines multiple base-level classifiers, shows 

the best results. The authors also showed that out of the used 

features, energy is the least significant one, and that there is 

no significant change in accuracy when this feature is not 

calculated. 

Kwapisz et al. in [5] tried to recognize activities by using 

data from a single acceleration sensor, but they used data from 

an acceleration sensor embedded into a standard mobile 

phone. These accelerometers typically detect acceleration up 

to ±2G along three axes. Their research methodology follows 

the one in [3, 4]. The authors collected data from 29 subjects, 

extracted 6 basic features and tested 3 classifiers, where 

multilayer perceptrons showed the best result, recognizing 

activities with an accuracy of 91.7%.  The authors showed 

that activity recognition can be performed successfully by 

using acceleration data from a mobile phone. 

Work presented in paper [6], which preceded this one, 

focuses on activity recognition by using an acceleration sensor 

embedded into a standard mobile phone. The approach for 

recognizing activities follows the one used in papers [3-5]. By 

using a specifically designed mobile application data from the 

acceleration sensor was collected while performing 8 different 

activities: standing, sitting, walking, running, walking up 

stairs, walking down stairs, driving a bicycle and doing 

pushups. Data was collected by a single test user. For 

calculating features of the signal from the acceleration sensor 

the FeatureExtraction library was developed. The library was 

developed in the Java programming language, so it could be 

used on desktop computers and also on mobile devices 

(primarily Android operating system was considered). One of 

the main goals in development was the flexibility of the 

library, and so the library allows: adding of features for 

extraction, defining of a sensor data source, and defining of 

components which use the feature extraction results.  

The basic classes of the library are shown in Fig. 1. The 

sensor data source is defined by inheriting the DataSource 

class. Features are added by inheriting the Feature class, and 

the components that use the feature extractions results are 

defined by implementing the FeatureExtractionListener 

interface. 

 
Fig. 1. FeatureExtraction library class diagram 

Within the paper, the files with recorded data from the 

acceleration sensor were used as a data source. The library 

was used to calculate the following features: mean, standard 

deviation, inter-axis correlation, acceleration vector intensity 

mean, energy and entropy. Feature extraction results were 

written into new files together with the name of the activity 

represented by the source data. Activity recognition was 

formulated as a classification problem in which classes 

correspond to activities and attributes correspond to features. 

The resulting files were used to train and test three classifiers 

available in the WEKA Machine Learning Algorithms Toolkit 

[7]. Tested classifiers were: C4.5 decision tree, Naïve Bayes 

and K-nearest neighbors. All three classifiers achieved 

excellent results in activity recognition, with more than 99% 

of successfully classified instances. 
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III. MOBILE APPLICATION FOR ACTIVITY 

RECOGNITION 

By using results from the paper [6] a mobile application for 

activity recognition directly on a mobile device in real time 

was developed. FeatureExtraction library was used for feature 

extraction. In this case the data source is the acceleration 

sensor itself. Data from the acceleration sensor is read and 

directly passed to the FeatureExtraction library. Diagram of 

the main application classes and their connections with the 

FeatureExtraction library is shown in Fig. 2. 

 
Fig. 2. The class diagram of mobile application for activity 

recognition  

Application for activity recognition consists of two 

components. The first component is an Android service [8], 

which performs the task of activity recognition. An Android 

service is an application component which enables performing 

of long-running tasks in the background, and as such is ideal 

for implementation of a system for activity recognition. The 

service itself has no user interface. The second component is 

an Android activity [9], which implements a simple user 

interface and it is used as a front-end for service control. 

Within the activity a user can start and stop the service, and 

also define a path to the file with the decision tree definition. 

The activity user interface is shown in Fig. 3. 

 

Fig. 3. Android activity for activity recognition service management 

Since all three classifiers from paper [6] showed excellent 

results in activity recognition, for the implementation on a 

mobile device, C4.5 decision tree was selected, because it 

requires the least amount of computation in the classification 

phase. Specifically, decision tree from the paper [6] was used. 

To increase the application flexibility, decision tree definition 

is not coded in the application itself, but in a separate file. In 

this way, it is simple to change the decision tree definition 

without any changes to the application itself.  

Feature extraction result from the FeatureExtraction library 

is returned to the activity recognition service which performs 

classification (recognition) of activities by using the externally 

defined decision tree. The service notifies all of the interested 

applications about the recognized activity, by using the 

standardized Android broadcasting mechanism. In this way 

any application can register to receive information about 

recognized activities and further process that information in 

an appropriate way. 

Developed application was tested with data from the 

acceleration sensor in real time, in order to determine 

application performance when dealing with real life data. The 

test user performed a subset of activities tested in [6]. Each 

activity was performed for a specific period of time, with an 

active application for activity recognition. The results from 

the application were recorded, and application success in 

recognizing specific activities was calculated. Table I shows 

that the results are similar or worse than the ones achieved 

with recorded data in [6], depending on the activity. 

Sitting and standing are two activities which are most easily 

distinguished from any other activity and were recognized 

with high accuracy. Even though the signal from the 

acceleration sensor for walking, walking down stairs and 

walking up stairs is very similar, walking was also recognized 

with high accuracy. Walking down and up stairs was 

recognized with lower accuracy than in [6]. Most of the 

misclassified walking down stairs instances were classified as 

walking and walking up stairs, and most of the misclassified 

walking up stairs instances were classified as walking and 

walking down stairs, which was expected given the fact the 

acceleration signal is similar for these activities. Our future 

research will try to improve recognition and distinction of 

walking and walking up/down stairs activities by taking into 

account a location of the mobile user detected by appropriate 

indoor localization system based on WiFi, Bluetooth or dead 

reckoning and using data from other available sensors.  

TABLE I 

APPLICATION PERFORMANCE IN RECOGNIZING ACTIVITIES 

Sitting 96% 

Standing 100% 

Walking 97.6% 

Walking down stairs 71.4% 

Walking up stairs 54.1% 

IV. EVALUATION OF APPLICATION IMPACT ON 

DEVICE PERFORMANCE 

Since the activity recognition service is a background 

process, which is supposed to be transparent for the user, it is 

very important to perform an analysis of energy consumption 

and processor load generated by the activity recognition 

service. Since the basic function of a standard mobile phone is 
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not activity recognition, processor load generated by the 

service must not be large, so that the performance of other 

application wouldn't be decreased. Also, battery consumption 

must not be large, so that the device autonomy wouldn't be 

decreased significantly. With lower power consumption it 

would be possible to monitor activities for prolonged periods 

of time, without the need to recharge the battery. Lower 

consumption and impact on the performance would lead to a 

higher degree of service acceptability from a larger number of 

users. As a test device for the evaluation of application impact 

on device performance Samsung I9001 Galaxy S Plus was 

used which runs on Android operating system version 2.3.5. 

The Fig. 4 shows that, if power consumption generated only 

by the processor is considered, with an active application for 

battery consumption measurement (PowerTutor), the service 

contributes to battery consumption with 3.7%. If power 

consumption generated by the display is taken into 

consideration as well, the service part in battery consumption 

drops to just 1.2%. Since the Android operating system kernel 

participates in battery consumption with 34.9% when battery 

consumption generated only by the processor is considered, it 

can be concluded that the service for activity recognition does 

not increase battery consumption significantly. 

 

Fig. 4. Energy consumption by the activity recognition service 

The Fig. 5 shows that, with an active application for 

processor load measurement (OS Monitor), the service for 

activity recognition participates in processor load with 1-2%. 

Since the participation in processor load is relatively small, it 

can be concluded that the service will not have a significant 

impact on other applications performance. 

 

Fig. 5. Processor load by the activity recognition service 

V. CONCLUSION 

In this paper, an overview of related work on activity 

recognition was presented, as well as some fundamentals in 

the development of modern context-aware services. A mobile 

application for activity recognition performed directly on a 

mobile device in real time was described. Following that an 

evaluation of impact that the application has on device 

performance was performed. It was concluded that the 

developed application does not increase processor load, or 

battery consumption significantly. From the aforementioned it 

can be concluded that mobile devices with a built-in 

acceleration sensor can perform activity recognition locally in 

an efficient way, without significant decrease in performance. 
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