

Evaluation of smartphone capabilities for efficient

physical activity recognition
Nikola Jajac

1
, Bratislav Predic

2
 and Dragan Stojanovic

3

Abstract – This paper considers if mobile devices are capable

to perform activity recognition locally in an efficient way. Within

the paper an application for activity recognition based on

accelerometer embedded in a mobile phone is described. An

evaluation of the impact that the application has on device

performance was performed. It was concluded that mobile

devices can perform activity recognition in an efficient way,

without significant decrease in mobile device performance.

Keywords – physical activity recognition, efficient

accelerometer data analysis, performance evaluation, mobile

device capabilities.

I. INTRODUCTION

Activity recognition fits within the bigger framework of

context awareness. Context-aware systems take into account

the current state of the user, as well as her surroundings,

enabling a mobile device and application to adapt in an

appropriate manner.

Initially, context-aware systems used location as the only

aspect that defined user context. With the development of

low-cost and low-power sensors (such as accelerometers,

gyroscopes, digital compasses, light sensors etc.) and their

integration into modern mobile devices, in combination with

advances in machine learning, it is possible to create a much

richer model of user context.

Activity of a user represents an important aspect of a

context, because it directly impacts her ability to interact with

the mobile device and applications. Information about the user

activity enriches the description of a user context and in that

manner enables the system to better adapt its services and

resources to user context, which can be performed even

without any explicit action from the user. In this way the user

can stay more focused on the task at hand.

A sensor whose data is probably the most useful in activity

recognition is the acceleration sensor. The acceleration sensor

is a sensor which measures acceleration along one, two or

three axes. Since the acceleration sensor also detects

acceleration due to gravity, it can be used for orientation

detection, which is useful information for activity recognition.

The greatest possibilities for application of activity

recognition systems lay in the healthcare domain. For

example, such systems can be used for elderly care support or

for long-term health/fitness monitoring [1]. Current methods

for tracking activities, like paying a trained observer or

relying on self-reporting are time and resource consuming

tasks, and are error prone. An automatic system for

recognizing activities could help reduce errors that arise from

previously mentioned methods. Also, such system would

enable its users to go about their daily routines, while the data

collection and processing are done in the background, and do

not interfere with current user activities.

Another possibility for application is in the social

networking domain. Social networks have an important place

in today's society. Existing communication services enable

simple exchange of text, images, videos etc., while by using

data from sensors, a much richer user context could be shared

with friends in a more natural and, for the user, simpler way.

Automatic activity recognition would enable users to share

their current activity with their friends over a social network

without interrupting the user in her activity, consequently

moving the interaction between social networks users to a new

level.

Activity recognition by using data from an acceleration

sensor can be performed in two ways. The first one implies

transfer of data from the acceleration sensor to a server, where

all of the further processing is done. In this way processor

power of a server is utilized and also device battery

consumption is decreased, since all of the processing is

transferred to the server. Disadvantage of this approach is the

necessity to transfer data to the server, and since it is a

centralized approach, question of scalability arises. The

second approach implies that the whole activity recognition

process is performed on the mobile device itself. In this case

there is no data transfer to a server, the system is maximally

scalable since the data from every device is processed on the

device itself, so it makes no difference how many devices

perform activity recognition simultaneously. On the other

hand, there is a question whether mobile devices have enough

resources to perform activity recognition seamlessly, or it

would cause significant increase in battery consumption and

processor load, up until a level when the user could not

continue to use other functionalities of the mobile device in a

way he is accustomed to.

This paper explores the possibility of activity recognition

directly on a mobile device in real time. As a test platform

Android operating system was used. The main reason for the

selection of Android operating system was the fact that by

September 2012. 500 million Android devices were activated

[2], and that 1.3 million new devices are activated every day,

which represents a huge base of potential users for an activity

recognition system. As a part of this paper a demo application

for activity recognition was developed and an evaluation of

the impact that the application has on a mobile device

1Nikola Jajac is with the Faculty of Electronic Engineering at

University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia,

E-mail: nikola.jajac@elfak.ni.ac.rs.
2Bratislav Predic is with the Faculty of Electronic Engineering at

University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia.
3Dragan Stojanovic is with the Faculty of Electronic Engineering

at University of Nis, Aleksandra Medvedeva 14, 18000 Nis, Serbia.

241

performance was performed, to determine whether a typical

mobile device can perform activity recognition in an efficient

way. The rest of the paper is organized as follows: section 2

provides an overview of related work on activity recognition,

with special regard to a paper which preceded this one and

whose results were used in the development of the application

for activity recognition. Section 3 describes the developed

application for activity recognition on Android mobile

devices. Section 4 presents the evaluation of impact that the

developed application has on device performance. Finally,

section 5 gives the conclusions about the paper.

II. RELATED WORK

In recent years there has been a lot of research related to

recognizing activities from accelerometer data. In [3] authors

used data from 5 biaxial accelerometers worn simultaneously

on different parts of the body. Used accelerometers could

detect acceleration up to ±10G. Accelerometers were mounted

onto hoarder boards and firmly attached to different body

parts. Data was collected from 20 subjects performing various

everyday tasks without researcher supervision. The following

features were computed on sliding windows of accelerometer

data: mean, energy, frequency-domain entropy and

correlation. A number of classifiers were trained and tested

with the calculated data, where decision trees showed the best

result, recognizing activities with an accuracy of 84%.

Ravi et al. in [4] attempted to perform activity recognition

using a single triaxial accelerometer worn near the pelvic

region. Data was collected by 2 subjects performing 8

different activities. Similarly to [3] the features were

computed using the sliding window technique. Four features

were extracted: mean, standard deviation, energy and

correlation. Extracted features were used to train and test 5

base-level classifiers, and in addition to that, 5 meta-level

classifiers. Authors concluded that meta-level classifiers in

general outperform base-level classifiers and that plurality

voting, which combines multiple base-level classifiers, shows

the best results. The authors also showed that out of the used

features, energy is the least significant one, and that there is

no significant change in accuracy when this feature is not

calculated.

Kwapisz et al. in [5] tried to recognize activities by using

data from a single acceleration sensor, but they used data from

an acceleration sensor embedded into a standard mobile

phone. These accelerometers typically detect acceleration up

to ±2G along three axes. Their research methodology follows

the one in [3, 4]. The authors collected data from 29 subjects,

extracted 6 basic features and tested 3 classifiers, where

multilayer perceptrons showed the best result, recognizing

activities with an accuracy of 91.7%. The authors showed

that activity recognition can be performed successfully by

using acceleration data from a mobile phone.

Work presented in paper [6], which preceded this one,

focuses on activity recognition by using an acceleration sensor

embedded into a standard mobile phone. The approach for

recognizing activities follows the one used in papers [3-5]. By

using a specifically designed mobile application data from the

acceleration sensor was collected while performing 8 different

activities: standing, sitting, walking, running, walking up

stairs, walking down stairs, driving a bicycle and doing

pushups. Data was collected by a single test user. For

calculating features of the signal from the acceleration sensor

the FeatureExtraction library was developed. The library was

developed in the Java programming language, so it could be

used on desktop computers and also on mobile devices

(primarily Android operating system was considered). One of

the main goals in development was the flexibility of the

library, and so the library allows: adding of features for

extraction, defining of a sensor data source, and defining of

components which use the feature extraction results.

The basic classes of the library are shown in Fig. 1. The

sensor data source is defined by inheriting the DataSource

class. Features are added by inheriting the Feature class, and

the components that use the feature extractions results are

defined by implementing the FeatureExtractionListener

interface.

Fig. 1. FeatureExtraction library class diagram

Within the paper, the files with recorded data from the

acceleration sensor were used as a data source. The library

was used to calculate the following features: mean, standard

deviation, inter-axis correlation, acceleration vector intensity

mean, energy and entropy. Feature extraction results were

written into new files together with the name of the activity

represented by the source data. Activity recognition was

formulated as a classification problem in which classes

correspond to activities and attributes correspond to features.

The resulting files were used to train and test three classifiers

available in the WEKA Machine Learning Algorithms Toolkit

[7]. Tested classifiers were: C4.5 decision tree, Naïve Bayes

and K-nearest neighbors. All three classifiers achieved

excellent results in activity recognition, with more than 99%

of successfully classified instances.

242

III. MOBILE APPLICATION FOR ACTIVITY

RECOGNITION

By using results from the paper [6] a mobile application for

activity recognition directly on a mobile device in real time

was developed. FeatureExtraction library was used for feature

extraction. In this case the data source is the acceleration

sensor itself. Data from the acceleration sensor is read and

directly passed to the FeatureExtraction library. Diagram of

the main application classes and their connections with the

FeatureExtraction library is shown in Fig. 2.

Fig. 2. The class diagram of mobile application for activity

recognition

Application for activity recognition consists of two

components. The first component is an Android service [8],

which performs the task of activity recognition. An Android

service is an application component which enables performing

of long-running tasks in the background, and as such is ideal

for implementation of a system for activity recognition. The

service itself has no user interface. The second component is

an Android activity [9], which implements a simple user

interface and it is used as a front-end for service control.

Within the activity a user can start and stop the service, and

also define a path to the file with the decision tree definition.

The activity user interface is shown in Fig. 3.

Fig. 3. Android activity for activity recognition service management

Since all three classifiers from paper [6] showed excellent

results in activity recognition, for the implementation on a

mobile device, C4.5 decision tree was selected, because it

requires the least amount of computation in the classification

phase. Specifically, decision tree from the paper [6] was used.

To increase the application flexibility, decision tree definition

is not coded in the application itself, but in a separate file. In

this way, it is simple to change the decision tree definition

without any changes to the application itself.

Feature extraction result from the FeatureExtraction library

is returned to the activity recognition service which performs

classification (recognition) of activities by using the externally

defined decision tree. The service notifies all of the interested

applications about the recognized activity, by using the

standardized Android broadcasting mechanism. In this way

any application can register to receive information about

recognized activities and further process that information in

an appropriate way.

Developed application was tested with data from the

acceleration sensor in real time, in order to determine

application performance when dealing with real life data. The

test user performed a subset of activities tested in [6]. Each

activity was performed for a specific period of time, with an

active application for activity recognition. The results from

the application were recorded, and application success in

recognizing specific activities was calculated. Table I shows

that the results are similar or worse than the ones achieved

with recorded data in [6], depending on the activity.

Sitting and standing are two activities which are most easily

distinguished from any other activity and were recognized

with high accuracy. Even though the signal from the

acceleration sensor for walking, walking down stairs and

walking up stairs is very similar, walking was also recognized

with high accuracy. Walking down and up stairs was

recognized with lower accuracy than in [6]. Most of the

misclassified walking down stairs instances were classified as

walking and walking up stairs, and most of the misclassified

walking up stairs instances were classified as walking and

walking down stairs, which was expected given the fact the

acceleration signal is similar for these activities. Our future

research will try to improve recognition and distinction of

walking and walking up/down stairs activities by taking into

account a location of the mobile user detected by appropriate

indoor localization system based on WiFi, Bluetooth or dead

reckoning and using data from other available sensors.

TABLE I

APPLICATION PERFORMANCE IN RECOGNIZING ACTIVITIES

Sitting 96%

Standing 100%

Walking 97.6%

Walking down stairs 71.4%

Walking up stairs 54.1%

IV. EVALUATION OF APPLICATION IMPACT ON

DEVICE PERFORMANCE

Since the activity recognition service is a background

process, which is supposed to be transparent for the user, it is

very important to perform an analysis of energy consumption

and processor load generated by the activity recognition

service. Since the basic function of a standard mobile phone is

243

not activity recognition, processor load generated by the

service must not be large, so that the performance of other

application wouldn't be decreased. Also, battery consumption

must not be large, so that the device autonomy wouldn't be

decreased significantly. With lower power consumption it

would be possible to monitor activities for prolonged periods

of time, without the need to recharge the battery. Lower

consumption and impact on the performance would lead to a

higher degree of service acceptability from a larger number of

users. As a test device for the evaluation of application impact

on device performance Samsung I9001 Galaxy S Plus was

used which runs on Android operating system version 2.3.5.

The Fig. 4 shows that, if power consumption generated only

by the processor is considered, with an active application for

battery consumption measurement (PowerTutor), the service

contributes to battery consumption with 3.7%. If power

consumption generated by the display is taken into

consideration as well, the service part in battery consumption

drops to just 1.2%. Since the Android operating system kernel

participates in battery consumption with 34.9% when battery

consumption generated only by the processor is considered, it

can be concluded that the service for activity recognition does

not increase battery consumption significantly.

Fig. 4. Energy consumption by the activity recognition service

The Fig. 5 shows that, with an active application for

processor load measurement (OS Monitor), the service for

activity recognition participates in processor load with 1-2%.

Since the participation in processor load is relatively small, it

can be concluded that the service will not have a significant

impact on other applications performance.

Fig. 5. Processor load by the activity recognition service

V. CONCLUSION

In this paper, an overview of related work on activity

recognition was presented, as well as some fundamentals in

the development of modern context-aware services. A mobile

application for activity recognition performed directly on a

mobile device in real time was described. Following that an

evaluation of impact that the application has on device

performance was performed. It was concluded that the

developed application does not increase processor load, or

battery consumption significantly. From the aforementioned it

can be concluded that mobile devices with a built-in

acceleration sensor can perform activity recognition locally in

an efficient way, without significant decrease in performance.

ACKNOWLEDGEMENT

This paper was realized as a part of the project "Studying

climate change and its influence on the environment: impacts,

adaptation and mitigation" (43007) financed by the Ministry

of Education, Science and Technological Development of the

Republic of Serbia within the framework of integrated and

interdisciplinary research for the period 2011-2014.

REFERENCES

[1] J. Lester, T. Choudhury, G. Booriello, “A Practical Approach to

Recognizing Physical Activities“, Proceedings of the 4th

International Conference on Pervasive Computing, 2006, pp. 1-

16.

[2] Wikipedia, Android (operating system),

http://en.wikipedia.org/wiki/Android_(operating_system),

10.04.2013.

[3] L. Bao, S. S. Intille, “Activity recognition from user-annotated

acceleration data“, Proceedings of the 2nd International

Conference on Pervasive Computing, 2004, pp. 1-17.

[4] N. Ravi, N. Dandekar, P. Mysore, M. L. Littman, “Activity

recognition from accelerometer data“, Proceedings of the

Seventeenth Conference on Innovative Applications of Artificial

Intelligence (IAAI-05), 2005, pp. 1541-1546.

[5] Jennifer R. Kwapisz, Gary M. Weiss, Samuel A. Moore,

“Activity Recognition using Cell Phone Accelerometers”, ACM

SIGKDD Explorations Newsletter, vol. 12, issue 2, pp. 74-82.

[6] Nikola Jajac, Bratislav Predic, Dragan Stojanovic, “User

activity detection using smartphones with acceleration sensor”,

Proceedings of the 56. conference ETRAN (in Serbian),

Zlatibor, 11-14. June 2012.

[7] I. H. Witte, E. Frank, “Data Mining: Practical Machine Learning

Tools and Techniques”, 3rd ed. Morgan Kaufmann, 2011.

[8] Android Developers, Service,

http://developer.android.com/reference/android/app/Service.htm

l, 10.04.2013.

[9] Android Developers, Activity,

http://developer.android.com/reference/android/app/Activity.ht

ml, 10.04.2013.

244

http://en.wikipedia.org/wiki/Android_(operating_system)

