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Abstract – Reed-Muller transform is kernel of many scientific 
and practical applications. During recent years, in order to improve 
performance, scientific software has been ported to multicore CPU 
(Central Processing Unit) and GPU (Graphics Processing Unit) 
platforms. This paper proposes parallel implementation for 
computing the best or optimal fixed polarity Reed-Muller 
transforms of Boolean functions in order to execute it efficiently on 
multicore-CPU platform. The computation of best transform is 
based on exhaustive search algorithm and it is implemented both 
with sequential code and through MPI (Message Parsing 
Interface) framework for parallel algorithms development. The 
experimental results are compared and it was found that the 
computations of best transform on multicore CPU are quite 
efficient in terms of computation time. 
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I. INTRODUCTION 

Reed-Muller (RM) transform represents an important class 
of AND-EXOR expressions and it has been efficiently applied 
in many areas such as signal processing [1], [2], coding 
technique [3], [4], and computer aided design [5], [6], 
including synthesis, verification, and testing. Fixed polarity 
RM form is the Reed-Miller polynomial expression in which 
each variable has the same form [7]. Any Boolean function 
can be expressed by fixed polarity RM forms. There are n2  
polarities for an n-variable Boolean function and the number 
of XOR terms depends on these polarities. Finding the best or 
optimal polarity can be very CPU time consuming, in order to 
search for the best polarity which will lead to the minimum 
number of XOR terms for a particular function.  

Therefore, there have been numerous algorithms developed 
to reduce the search time for finding the best polarity of RM 
forms. The most popular search criterion of the best polarity 
RM form is obtained by the exhaustive search of the all 
possible polarity vectors. An efficient exhaustive search of the 
all possible polarity vectors can be constructed by using the 
dual polarity search route method [8], [9], [10], [11], and 
transeunt triangle method [12], [13]. Instead of generating all 
of the polarity vectors and searching for the best polarity, 
many algorithms will find the non-exact optimal polarity 
using: the separation and sparse techniques [14], [15], 
quantum genetic and propagation of signal probability 
techniques [16], and  technique based on Ordered functional 
decision diagrams (OFDDs) [17], [18], [19].  Furthermore, in 
[20] it has been developed non-exhaustive exact method for 
finding best fixed polarity Reed-Muller form directly from 
Walsh spectral coefficient, but only for 3-variable Boolean 

functions. In general no efficient algorithm has been found 
that is able to obtain exact best polarity vector without 
constructing XOR terms for all polarities.      

To solve large-scale problems parallel computing has been 
used efficiently either by distributing computational loads 
among processors or by utilizing the large memory in parallel 
networked workstations. During recent years, a large number 
of scientific algorithms and specific applications have been 
successfully ported to multicore CPUs and manycore GPUs 
platforms. Implementations on these platforms are recognized 
as having the potential to considerably speedup or accelerate 
compute intensive algorithms over their equivalent single 
CPU core implementations [21], [22]. Parallel computing on 
multicore CPUs enables parallel processing on commodity 
hardware. Only very recently the possibility of using 
multicore CPUs to solve complex problems in logic design 
has been explored by many researchers, for example in [23], 
[24].  

Moreover, inspired by efficient execution of parallel 
problems in logic design and possibility of using multicore 
CPUs platform, in this paper it is proposed parallel 
implementation for computing the best fixed polarity Reed-
Muller transforms of Boolean functions in order to execute it 
efficiently on multicore-CPU platform. The computation of 
best transform is based on exhaustive search algorithms and it 
is implemented both with sequential code and through MPI 
(Message Parsing Interface) framework for parallel algorithms 
development. The proposed implementation exploits the 
various points of parallelism that can be found in exhaustive 
search based algorithm for best RM transform and made an 
efficient mapping of the points to the multicore CPU 
architecture. The experimental results confirm that the 
application of the proposed MPI implementation of best RM 
transform on multicore CPU leads to significant 
computational speedups over traditional C/C++ 
implementations processed on single CPU. 

This paper is organized as follows: Section 2 shortly 
introduces the fixed polarity RM transform of Boolean 
function and illustrates polarity influence on the size of the 
resulting RM form. In section 3, multicore CPU platform is 
discussed. In Section 4, it is described a proposed MPI 
parallel implementation to be executed on a multicore CPU 
platform. The features of proposed implementation for the 
computation of the best RM transform were experimentally 
tested in section 5. Section 6 offers some concluding remarks 
and directions for future work.    

II. REED-MULLER TRANSFORM  

A positive polarity Reed-Muller form (PPRM) is an 
exclusive-OR of AND product terms, where each variable 
only appeared in un-complemented form. Any n-variable 
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Boolean function given by truth vector 

[ ]TnfffF 12,,10, −= K can be represented by the PPRM form 
in matrix notation defined as [6]: 
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where⊗ denotes the Kronecker product, addition and 
multiplication are in modulo 2, )(nA represents the positive 
Reed-Muller transform matrix of order n, and )1(A is the basic 
positive Reed-Muller transform matrix. 

A fixed polarity Reed-Muller form (FPRM) is an exclusive-
OR of AND product terms, where each variable only appeared 
in complemented or un-complemented form, but not both. 
FPRMs are canonical representation of Boolean functions 
defined as [6]: 
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where FPRMs are specified by the polarity vector: 

[ ]nhhhH ,,, 21 K= ,     (7) 

where the component }1,0{∈ih specifies the polarity for the 
variable ix . If 1=ih , then the i-th variable is represented by 

the complemented literal ix , and when 0=ih , by the un-
complemented literal ix .  

An FPRM transform can be given by the FPRM spectrum 
H

fS calculated as: 

 FnAS H
H
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The choice of the polarity largely influnces the size of the 
resulting FPRM, as is shown by the following example: 
 

Example 1: The FPRM of a two-variable Boolean function f, 
given by the truthvector [ ]TF 0,0,0,1= , for a polarity vector 

[ ]0,0=H is given by: 
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The corresponding FPRM for [ ]1,1=H is given by: 
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Fast Fourier transform (FFT) is an algorithm for efficient 
calculation in terms of space and time of the Discrete Fourier 
transform (DFT). Extension of FFT to FPRM transform is 
straightforward, thanks to the so-called Good–Thomas 
factorization for Reed-Muller matrices [6], [7]. This feature is 
highly exploited in computing RM transform in the proposed  
implementation of best RM transform on multicore CPU. 

III. MULTICORE CPU PLATFORM 

During the past few years, the major chip manufacturers 
have realized that growing the processor’s clock speed is no 
longer practical because of its physical limitations. Therefore, 
they are now interesting on increasing their processors 
performance by integrating multiple processing cores. 
Particularly, parallel architectures, such as the multicore CPU 
and manycore GPU, have much attention for high 
performance computing on consumer level. Thus, many 
software applications which were developed for processing on 
single-core processors are now being reimplemented in order 
to efficiently exploit the multicore CPU hardware resources. 
To solve scientific problems we need not only fast algorithms 
but also a combination of good tools and fast computers.  

The model of the parallel processing that is developed in 
multicore CPU architectures is based on a large number of 
processor cores with the ability to directly address into a 
shared RAM memory. Those architectures provide parallel 
single instruction multiple datastream (SIMD) computing 
units, up to several processing cores, huge memory bandwidth 
and caches, and rather simple branching circuits. In SIMD 
computing, a large number of threads execute in parallel a 
single data-parallel function.  

There are several application programming interfaces 
which are available for the development of multicore CPU 
programs, like MPI, OpenMPI, OpenMP or TBB (Treading 
Building Blocks). MPI has become a widely used standard, 
though not necessarily the best language for parallel 
programming. Among the parallel programming standards, 
the MPI is very popular because of its rich interface. Also, the 
implementations available manage to bridge the performance 
gap between the hardware and the applications [25]. During 
an MPI application, data are exchanged among the various 
participating processes. The MPI programming paradigm is: 
each process may communicate with any other in the 
application. Process communication using a network is slower 
than process communication using shared memory [26]. 
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IV. REED-MULLER TRANSFORM ON MULTICORE 
CPU PLATFORM 

In this section, it is presented both implementations for 
FPRM transform with sequential code and through MPI 
framework. An outline of the sequential program for 
computation of FPRM transform on singlecore CPU platform 
is given as Algorithm 1. 

 
Algorithm 1 
1: Set the total number of non-zero coefficients in FPRM 

spectrum minC to maximum value. 
2: Determine the next polarity vector H, of the FPRM form 

according to the exhaustive rule. 
3: Compute the FPRM spectrum of polarity H based on the 

FFT-like calculation from truth vector of Boolean function. 
4: Calculate the total number of non-zero coefficients C in 

FPRM spectrum. 
5: If C < minC then minC = C. 
6: Stop if all polarities have been treated. Otherwise go to 

the step 2. 
7: Obtain polarity H having minimal number of non-zero 

coefficients (minC).     
 
The sequential program accepts a Boolean function, 

represented by its truth vector and obtain best polarity vector 
as having the influence in optimal size of the resulting FPRM. 
However, it should be noticed that finding the best polarity 
can be very CPU time consuming, since the methods for 
computing the FPRM transform (step 3) are exponential in the 
number of variables in the function.  

An outline of the parallel program for computation of 
FPRM transform on multicore CPU platform is given as 
Algorithm 2. This organization of computations allows to 
have a large number of processes performing the same 
operations on different data simultaneously which is a good 
match to the multicore CPU hardware. In considered 
mappings of sequential program, the input truth function 
vector is shared between processes and the FPRM spectrums 
of procesess are stored in the RAM memory. It should be 
noticed that very CPU time consuming part (computing the 
FPRM transform in step 3) is split up into cores tasks and 
each task is assigned one set of polarity vectores. Note that 
each task allocates only as much storage as needed for its 
arrays. 

However, this implementation is tailored for a specific 
vendor hardware and is thus not suitable for a generic case. 

Algorithm 2  
1: Set the total number of non-zero coefficients in FPRM 

spectrum minC to maximum value. 
2: Initialize the MPI execution environment using MPI_Init 

command. 
3: Get the number of processes (cores), and the id of this 

process using MPI_Comm_size and MPI_Comm_rank 
commands. 

4: Allocate memory for message passing of truth vector of 
Boolean function using MPI_Alloc_mem command. 

5: Use the id of this process and number of cores to work 
out which iterations to perform on determining the next 
polarity vector H. 

6: Determine the next polarity vector H, of the FPRM form 
according to the exhaustive rule. 

7: Compute the FPRM spectrum of polarity H based on the 
FFT-like calculation from truth vector of Boolean function. 

8: Calculate the total number of non-zero coefficients C  
9: If C < minC then minC = C. 
10: Stop if all polarities have been treated. Otherwise go to 

the step 6. 
11: Determine the minimal minC an find the id of process 

with minimal minC using MPI_Reduce command. 
12: If  id of process = id of process with minimal minC then 

obtain polarity H having minimal number of non-zero 
coefficients (minC). 

13: Terminates MPI execution environment using 
MPI_Finalize command. 

V. EXPERIMENTAL RESULTS  

In this section we compared the performance of our 
multicore CPU accelerated to a single-core CPU 
implementation for a sample set of random functions. Below 
we give Table 1 of computation performance using algorithms 
from previous section. The data in table are sorted in the 
increasing order of the number of functions variables.  

TABLE I 
COMPUTATION TIMES OF BEST REED-MULLER TRANSFORM ON 

SINGLE CPU AND MULTICORE CPU PLATFORM  

Num. of function  
variables 

computation time [s] 
CPU multicore CPU 

10 0.001 0.000 
11 0.125 0.019 
12 0.530 0.081 
13 2.294 0.364 
14 7.021 1.132 
15 38.564 6.536 
16 135.346 25.064 

 
The computations are testing on a PC Pentium IV on 2.66 

GHz with 4 GB of RAM. Multicore CPU that is used is an 
Intel i7 with and its 4 physical cores and hyper-threading 
yields 8 logical cores on desktop PCs. The MPI environment 
are developed using the Microsoft HPC Server 2008 [27]. All 
times in all tables are given in seconds. 

 As it can be seen from Table 1, the MPI implementation of 
the best RM transform clearly outperforms the referent 
sequential CPU implementation. The speedup, in terms of 
number of variables of the function, varies from the factor of 
6.5x to 5.5x.  

VI. CONCLUSION 

This paper proposes an efficient implementation of best 
fixed polarity Reed-Muller transform computation based on 
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exhaustive search of the all possible polarity vectors on 
multicore CPU platform. The ultimate goal is to exceed the 
computation performance for finding the best polarity, since 
the computation time for the FPRM transforms are 
exponential in the number of variables in the function. The 
proposed implementation exploits the parallel mapping of 
exhaustive search for best FPRM transform performing the 
same operations on different data simultaneously which is a 
good match to the multicore CPU hardware.  

The experimental results confirm that the application of the 
proposed implementation on multicore CPU platform leads to 
significant computational speedups. It is also confirmed that 
this implementation is especially efficient for functions with 
large number of variables. From results, it is evident that 
standard MPI framework can be efficiently used in 
implementation on parallel computation of best FPRM 
transform.  

Future work will be on extension of the proposed method 
and the algorithm to various other polynomial transform for 
Boolean functions. 
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