

Computation of Best Fixed Polarity Reed-Muller
Transform on Multicore CPU Platform

Miloš M. Radmanović1

Abstract – Reed-Muller transform is kernel of many scientific
and practical applications. During recent years, in order to improve
performance, scientific software has been ported to multicore CPU
(Central Processing Unit) and GPU (Graphics Processing Unit)
platforms. This paper proposes parallel implementation for
computing the best or optimal fixed polarity Reed-Muller
transforms of Boolean functions in order to execute it efficiently on
multicore-CPU platform. The computation of best transform is
based on exhaustive search algorithm and it is implemented both
with sequential code and through MPI (Message Parsing
Interface) framework for parallel algorithms development. The
experimental results are compared and it was found that the
computations of best transform on multicore CPU are quite
efficient in terms of computation time.

Keywords – Reed-Muller transform, parallel FFT-like
algorithms, multicore CPU, MPI.

I. INTRODUCTION

Reed-Muller (RM) transform represents an important class
of AND-EXOR expressions and it has been efficiently applied
in many areas such as signal processing [1], [2], coding
technique [3], [4], and computer aided design [5], [6],
including synthesis, verification, and testing. Fixed polarity
RM form is the Reed-Miller polynomial expression in which
each variable has the same form [7]. Any Boolean function
can be expressed by fixed polarity RM forms. There are n2
polarities for an n-variable Boolean function and the number
of XOR terms depends on these polarities. Finding the best or
optimal polarity can be very CPU time consuming, in order to
search for the best polarity which will lead to the minimum
number of XOR terms for a particular function.

Therefore, there have been numerous algorithms developed
to reduce the search time for finding the best polarity of RM
forms. The most popular search criterion of the best polarity
RM form is obtained by the exhaustive search of the all
possible polarity vectors. An efficient exhaustive search of the
all possible polarity vectors can be constructed by using the
dual polarity search route method [8], [9], [10], [11], and
transeunt triangle method [12], [13]. Instead of generating all
of the polarity vectors and searching for the best polarity,
many algorithms will find the non-exact optimal polarity
using: the separation and sparse techniques [14], [15],
quantum genetic and propagation of signal probability
techniques [16], and technique based on Ordered functional
decision diagrams (OFDDs) [17], [18], [19]. Furthermore, in
[20] it has been developed non-exhaustive exact method for
finding best fixed polarity Reed-Muller form directly from
Walsh spectral coefficient, but only for 3-variable Boolean

functions. In general no efficient algorithm has been found
that is able to obtain exact best polarity vector without
constructing XOR terms for all polarities.

To solve large-scale problems parallel computing has been
used efficiently either by distributing computational loads
among processors or by utilizing the large memory in parallel
networked workstations. During recent years, a large number
of scientific algorithms and specific applications have been
successfully ported to multicore CPUs and manycore GPUs
platforms. Implementations on these platforms are recognized
as having the potential to considerably speedup or accelerate
compute intensive algorithms over their equivalent single
CPU core implementations [21], [22]. Parallel computing on
multicore CPUs enables parallel processing on commodity
hardware. Only very recently the possibility of using
multicore CPUs to solve complex problems in logic design
has been explored by many researchers, for example in [23],
[24].

Moreover, inspired by efficient execution of parallel
problems in logic design and possibility of using multicore
CPUs platform, in this paper it is proposed parallel
implementation for computing the best fixed polarity Reed-
Muller transforms of Boolean functions in order to execute it
efficiently on multicore-CPU platform. The computation of
best transform is based on exhaustive search algorithms and it
is implemented both with sequential code and through MPI
(Message Parsing Interface) framework for parallel algorithms
development. The proposed implementation exploits the
various points of parallelism that can be found in exhaustive
search based algorithm for best RM transform and made an
efficient mapping of the points to the multicore CPU
architecture. The experimental results confirm that the
application of the proposed MPI implementation of best RM
transform on multicore CPU leads to significant
computational speedups over traditional C/C++
implementations processed on single CPU.

This paper is organized as follows: Section 2 shortly
introduces the fixed polarity RM transform of Boolean
function and illustrates polarity influence on the size of the
resulting RM form. In section 3, multicore CPU platform is
discussed. In Section 4, it is described a proposed MPI
parallel implementation to be executed on a multicore CPU
platform. The features of proposed implementation for the
computation of the best RM transform were experimentally
tested in section 5. Section 6 offers some concluding remarks
and directions for future work.

II. REED-MULLER TRANSFORM

A positive polarity Reed-Muller form (PPRM) is an
exclusive-OR of AND product terms, where each variable
only appeared in un-complemented form. Any n-variable

1Miloš M. Radmanović is with the Faculty of Electronic
Engineering, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
milos.radmanovic@gmail.com

249

Boolean function given by truth vector

[]TnfffF 12,,10, −= K can be represented by the PPRM form
in matrix notation defined as [6]:

 FnAnXxxxf n)()(),,,(21 =K (1)

where

[]i
n

i
xnX 1)(

1=
⊗= (2)

and

⎥
⎦

⎤
⎢
⎣

⎡
⊗=
= 11

01
)(

1

n

i
nA (3)

where⊗ denotes the Kronecker product, addition and
multiplication are in modulo 2,)(nA represents the positive
Reed-Muller transform matrix of order n, and)1(A is the basic
positive Reed-Muller transform matrix.

A fixed polarity Reed-Muller form (FPRM) is an exclusive-
OR of AND product terms, where each variable only appeared
in complemented or un-complemented form, but not both.
FPRMs are canonical representation of Boolean functions
defined as [6]:

FnAnXxxxf HHn)()(),,,(21 =K (4)

where

[]ih
i

n

i
H xnX 1)(

1=
⊗=

⎩
⎨
⎧

=
=

=
1,
0,

ii

iih
i hx

hx
x i (5)

and

)1()(
1

ih
i

n

i
H AnA

=
⊗=

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=⎥
⎦

⎤
⎢
⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

=
1 ,

11
10

0 ,
11
01

)1(

i

i
h
i

h

h
A i , (6)

where FPRMs are specified by the polarity vector:

[]nhhhH ,,, 21 K= , (7)

where the component }1,0{∈ih specifies the polarity for the
variable ix . If 1=ih , then the i-th variable is represented by

the complemented literal ix , and when 0=ih , by the un-
complemented literal ix .

An FPRM transform can be given by the FPRM spectrum
H

fS calculated as:

 FnAS H
H

f)(= . (8)

The choice of the polarity largely influnces the size of the
resulting FPRM, as is shown by the following example:

Example 1: The FPRM of a two-variable Boolean function f,
given by the truthvector []TF 0,0,0,1= , for a polarity vector

[]0,0=H is given by:

[] []

2121

2121

1

)
11
01

11
01

)(11(),(

xxxx

Fxxxxf

⊕⊕⊕=

=⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗=

The corresponding FPRM for []1,1=H is given by:

[] [] 212121)
11
10

11
10

)(11(),(xxFxxxxf =⎥
⎦

⎤
⎢
⎣

⎡
⊗⎥

⎦

⎤
⎢
⎣

⎡
⊗=

Fast Fourier transform (FFT) is an algorithm for efficient
calculation in terms of space and time of the Discrete Fourier
transform (DFT). Extension of FFT to FPRM transform is
straightforward, thanks to the so-called Good–Thomas
factorization for Reed-Muller matrices [6], [7]. This feature is
highly exploited in computing RM transform in the proposed
implementation of best RM transform on multicore CPU.

III. MULTICORE CPU PLATFORM

During the past few years, the major chip manufacturers
have realized that growing the processor’s clock speed is no
longer practical because of its physical limitations. Therefore,
they are now interesting on increasing their processors
performance by integrating multiple processing cores.
Particularly, parallel architectures, such as the multicore CPU
and manycore GPU, have much attention for high
performance computing on consumer level. Thus, many
software applications which were developed for processing on
single-core processors are now being reimplemented in order
to efficiently exploit the multicore CPU hardware resources.
To solve scientific problems we need not only fast algorithms
but also a combination of good tools and fast computers.

The model of the parallel processing that is developed in
multicore CPU architectures is based on a large number of
processor cores with the ability to directly address into a
shared RAM memory. Those architectures provide parallel
single instruction multiple datastream (SIMD) computing
units, up to several processing cores, huge memory bandwidth
and caches, and rather simple branching circuits. In SIMD
computing, a large number of threads execute in parallel a
single data-parallel function.

There are several application programming interfaces
which are available for the development of multicore CPU
programs, like MPI, OpenMPI, OpenMP or TBB (Treading
Building Blocks). MPI has become a widely used standard,
though not necessarily the best language for parallel
programming. Among the parallel programming standards,
the MPI is very popular because of its rich interface. Also, the
implementations available manage to bridge the performance
gap between the hardware and the applications [25]. During
an MPI application, data are exchanged among the various
participating processes. The MPI programming paradigm is:
each process may communicate with any other in the
application. Process communication using a network is slower
than process communication using shared memory [26].

250

IV. REED-MULLER TRANSFORM ON MULTICORE
CPU PLATFORM

In this section, it is presented both implementations for
FPRM transform with sequential code and through MPI
framework. An outline of the sequential program for
computation of FPRM transform on singlecore CPU platform
is given as Algorithm 1.

Algorithm 1
1: Set the total number of non-zero coefficients in FPRM

spectrum minC to maximum value.
2: Determine the next polarity vector H, of the FPRM form

according to the exhaustive rule.
3: Compute the FPRM spectrum of polarity H based on the

FFT-like calculation from truth vector of Boolean function.
4: Calculate the total number of non-zero coefficients C in

FPRM spectrum.
5: If C < minC then minC = C.
6: Stop if all polarities have been treated. Otherwise go to

the step 2.
7: Obtain polarity H having minimal number of non-zero

coefficients (minC).

The sequential program accepts a Boolean function,

represented by its truth vector and obtain best polarity vector
as having the influence in optimal size of the resulting FPRM.
However, it should be noticed that finding the best polarity
can be very CPU time consuming, since the methods for
computing the FPRM transform (step 3) are exponential in the
number of variables in the function.

An outline of the parallel program for computation of
FPRM transform on multicore CPU platform is given as
Algorithm 2. This organization of computations allows to
have a large number of processes performing the same
operations on different data simultaneously which is a good
match to the multicore CPU hardware. In considered
mappings of sequential program, the input truth function
vector is shared between processes and the FPRM spectrums
of procesess are stored in the RAM memory. It should be
noticed that very CPU time consuming part (computing the
FPRM transform in step 3) is split up into cores tasks and
each task is assigned one set of polarity vectores. Note that
each task allocates only as much storage as needed for its
arrays.

However, this implementation is tailored for a specific
vendor hardware and is thus not suitable for a generic case.

Algorithm 2
1: Set the total number of non-zero coefficients in FPRM

spectrum minC to maximum value.
2: Initialize the MPI execution environment using MPI_Init

command.
3: Get the number of processes (cores), and the id of this

process using MPI_Comm_size and MPI_Comm_rank
commands.

4: Allocate memory for message passing of truth vector of
Boolean function using MPI_Alloc_mem command.

5: Use the id of this process and number of cores to work
out which iterations to perform on determining the next
polarity vector H.

6: Determine the next polarity vector H, of the FPRM form
according to the exhaustive rule.

7: Compute the FPRM spectrum of polarity H based on the
FFT-like calculation from truth vector of Boolean function.

8: Calculate the total number of non-zero coefficients C
9: If C < minC then minC = C.
10: Stop if all polarities have been treated. Otherwise go to

the step 6.
11: Determine the minimal minC an find the id of process

with minimal minC using MPI_Reduce command.
12: If id of process = id of process with minimal minC then

obtain polarity H having minimal number of non-zero
coefficients (minC).

13: Terminates MPI execution environment using
MPI_Finalize command.

V. EXPERIMENTAL RESULTS

In this section we compared the performance of our
multicore CPU accelerated to a single-core CPU
implementation for a sample set of random functions. Below
we give Table 1 of computation performance using algorithms
from previous section. The data in table are sorted in the
increasing order of the number of functions variables.

TABLE I
COMPUTATION TIMES OF BEST REED-MULLER TRANSFORM ON

SINGLE CPU AND MULTICORE CPU PLATFORM

Num. of function
variables

computation time [s]
CPU multicore CPU

10 0.001 0.000
11 0.125 0.019
12 0.530 0.081
13 2.294 0.364
14 7.021 1.132
15 38.564 6.536
16 135.346 25.064

The computations are testing on a PC Pentium IV on 2.66

GHz with 4 GB of RAM. Multicore CPU that is used is an
Intel i7 with and its 4 physical cores and hyper-threading
yields 8 logical cores on desktop PCs. The MPI environment
are developed using the Microsoft HPC Server 2008 [27]. All
times in all tables are given in seconds.

 As it can be seen from Table 1, the MPI implementation of
the best RM transform clearly outperforms the referent
sequential CPU implementation. The speedup, in terms of
number of variables of the function, varies from the factor of
6.5x to 5.5x.

VI. CONCLUSION

This paper proposes an efficient implementation of best
fixed polarity Reed-Muller transform computation based on

251

exhaustive search of the all possible polarity vectors on
multicore CPU platform. The ultimate goal is to exceed the
computation performance for finding the best polarity, since
the computation time for the FPRM transforms are
exponential in the number of variables in the function. The
proposed implementation exploits the parallel mapping of
exhaustive search for best FPRM transform performing the
same operations on different data simultaneously which is a
good match to the multicore CPU hardware.

The experimental results confirm that the application of the
proposed implementation on multicore CPU platform leads to
significant computational speedups. It is also confirmed that
this implementation is especially efficient for functions with
large number of variables. From results, it is evident that
standard MPI framework can be efficiently used in
implementation on parallel computation of best FPRM
transform.

Future work will be on extension of the proposed method
and the algorithm to various other polynomial transform for
Boolean functions.

REFERENCES

[1] R. E. Blahut, Fast Algorithms for Signal Processing, Cambridge
University Press, 2010.

[2] N. Ahmed, K. R. Rao, Orthogonal Transforms for Digital
Signal Processing, Springer-Verlag, 1975.

[3] J. S. Chitode, Information Coding Techniques, Technical
Publications, 2007.

[4] P. Sweeney, Error Control Coding: From Theory to Practice,
Wiley, 2002.

[5] M. A. Thornton, R. Drechsler, and D. M. Miller, Spectral
Techniques in VLSI CAD, Springer, 2001.

[6] M. G. Karpovsky, R. S. Stanković, and J. T. Astola, Spectral
Logic and Its Applications for the Design of Digital Devices,
Wiley, 2008.

[7] T. Sasao, M. Fujita, Representations of Discrete Functions,
Kluwer Academic Publishers, Boston, 1996.

[8] E. C. Tan, H. Yang, "Optimization of Fixed-Polarity Reed-
Muller Circuits Using Dual-Polarity Property", Circuits Systems
Signal Process, vol. 19, no. 6, pp. 535-548, 2000.

[9] B. J. Falkowski, C. H. Chang, "Generalised k-variable-mixed-
polarity Reed-Muller Expansions for System of Boolean
Functions and their Minimization", IEE Proc. of Circuits,
Devices and Systems, vol. 147, no. 4, pp. 201-210, 2000.

[10] B. J. Falkowski, S. Rahardja, and C. C. Lozano, "Efficient
Calculation of Fixed Polarity Reed-Muller Expansions over
GF(5) using Extended Dual Polarity Property", Proc. of the
47th Midwest Symposium on Circuits and Systems, vol.2, pp.
221-224, 2004.

[11] D. Janković, R. S. Stanković, and C. Moraga, "Optimization of
Polynomial Expressions by Using the Extended Dual Polarity",
IEEE Trans. on Computers, vol. 58, no. 12, pp. 1710-1725,
2009.

[12] G. W. Dueck, D. Maslov, J. T. Butler, V. P. Shmerko, and S. N.
Yanushkevich, “A Method to Find the Best Mixed Polarity
Reed-Muller Expression using Transeunt Triangle”, Proc. of the
5th Int. Reed-Muller Workshop, pp. 82-92, Starkville, MA,
USA, 2001.

[13] K. Faraj, Combinational Logic Synthesis Based on the Dual
Form of Reed-Muller Representation, PhD Thesis, Edinburgh
Napier University, 2005.

[14] K. Faraj, A. E. A. Almaini, “Optimal Polarity for Dual Reed-
Muller Expressions”, Proc. of the 7th WSEAS Int. Conf. on
Microelectronics, Nanoelectronics, Optoelectronics, pp. 45-52,
Istanbul, Turkey, 2008.

[15] W. Wu; P. Wang, X. Zhang and L. Wang, "Search for the Best
Polarity of Fixed Polarity Reed Muller Expression Base on
QGA", Proc. of 11-th IEEE Int. Conf. on Communication
Technology, pp. 343-346, 2008.

[16] J. T. Butler, G. W. Dueck, S. N. Yanushkevich, and V. P.
Shmerko, “On the Use of Transeunt Triangles to Synthesize
Fixed-polarity Reed-Muller Expansions of Symmetric
Functions”, Proc. of the Reed-Muller Workshop, pp. 119–126,
Naha, Okinawa, Japan, 2009.

[17] R. Drechsler, M. Theobald, and B. Becker, "Fast OFDD-based
Minimization of Fixed Polarity Reed-Muller Expressions",
IEEE Trans. on Computers, vol. 45, no. 11, pp. 1294-1299,
1996.

[18] R. Drechsler, B. Becker, "Sympathy: Fast Exact Minimization
of Fixed Polarity Reed-Muller Expressions for Symmetric
Functions," IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 16, no. 1, pp. 1-5, 1997.

[19] J. T. Butler, G. W. Dueck, S. Yanushkevich, and V. P. Shmerko,
“Comments on ’Sympathy: Fast Exact Minimization of Fixed
Polarity Reed-Muller Expansion for Symmetric Functions”,
IEEE Trans. on Computer-Aided Design, vol. 19, no. 11, pp.
1386-1388, 2000.

[20] B. J. Falkowski, S. Yan, “Walsh-Hadamard Optimization of
Fixed Polarity Reed-Muller Transform”, IEICE Electronic
Express, vol. 1, no. 2, pp. 39-45, 2004.

[21] G. E. Karniadakis, R. M. Kirby, Parallel Scientific Computing
in C++ and MPI: A Seamless Approach to Parallel Algorithms
and their Implementation, Cambridge University Press, 2003.

[22] T. Aamodt, “Architecting Graphics Processors for Non-graphics
Compute Acceleration”, Proc. Of the IEEE Pacific Rim Conf.
on Communications, Computers and Signal Processing, pp. 963-
968, 2009.

[23] C. Brunelli, R. Airoldi, J. Nurmi, "Implementation and
Benchmarking of FFT Algorithms on Multicore Platforms," Int.
Symposium on System on Chip (SoC), pp.59,62, 2010.

[24] Y. Zhou, J. Zhang, and D. Fan, "Software and Hardware
Cooperate for 1-D FFT Algorithm Optimization on Multicore
Processors," Ninth IEEE Int. Conf. on Computer and
Information Technology, CIT '09., vol.1, pp. 86,91, 2009.

[25] C. Hughes, T. Hughes, Professional Multicore Programming:
Design and Implementation for C++ Developers, Wiley-
Interscience, 2011.

[26] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable
Parallel Programming with the Message-Passing Interface,
MIT Press, 1999.

[27] Microsoft Corporation, "Windows HPC Server 2008 R2
Technical Library", 2008, http://technet.microsoft.com/sr-latn-
rs/hpc/, retrieved April 2013.

252

