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Abstract – A reference point hybrid evolutionary algorithm is 
proposed. It combines a heuristic for fast moving the population 
with fitness function evaluation based on scalarizing approach. A 
dialog with the decision maker in an interactive manner is 
included. A test example is presented to illustrate the 
performance of the new hybrid evolutionary algorithm. 
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I. INTRODUCTION 

The evolutionary multi-objective optimization (EMOO) is a 
popular and useful field for research and development of 
algorithms which solve many real-life multi-objective 
problems ([3, 8]). EMOO has been evaluated as a very fast 
growing field of research and application ([3, 8]).  

The Evolutionary Optimization (EO) algorithms use a 
population-based approach, in which the iterations are 
performed on a set of solutions (called population) and more 
than one solution is generated at each iteration. The main 
reasons for the popularity of EO algorithms are the following: 
 

(i)   They do not require any derivative information; 
(ii)   EO algorithms are relatively simple to implement; 
(iii)  EO algorithms are flexible and robust, i.e., they 

perform very well on a wide spectrum of problems ([7]). 
To reduce the number of iterations in the new algorithm a 

combination of EO-approach and a heuristic, designed to 
move the population to the Pareto-optimal front is used. 

II. PROBLEM FORMULATION AND APPROACHES 
FOR ITS SOLVING 

The integer multi-objective convex optimization problem 
can be stated as follows: 

             Min  f(x) = [ f1(x), f2(x), …, fk(x)]T               (1) 
subject to:   gj(x) ≤ 0,           j = 1, 2, ..., m,         (2) 

           xi
(L) ≤ xi ≤ xi

(U),  i = 1, 2,…, n,          (3) 
x ∈ Zn,                           (4) 

where  gj(x),  j = 1, 2,…, m are convex functions;  
xi

(L) and xi
(U) , i = 1, 2,…, n  are the known lower and 

upper bound of the variable xi  respectively; 
fj(x), j = 1, 2,…, k  are convex nonlinear functions. 

Further on the solution x∈Zn denotes a vector of n decision 
variables: x = (x1, x2,…, xn)T. The constraints (2)-(4) constitute 
a feasible decision domain V ⊂ Zn.  

S = f(V) = { s = f(x), x∈V}  is a k-dimensional 
objectives’ region, S ⊂ Rk.  
We shall use the term “solution” as a vector of variables in the 
decision space and the term “point” as a vector of the criteria 
values in the objectives’ space. 

  Definition: A solution x(1) is said to dominate the solution 
x(2), if the following two conditions are true: 

1. The solution x(1) is not worse than x(2) in all the 
objectives. Thus, the solutions are compared based on their 
objective function values. 

2. The solution x(1) is strictly better than x(2) in at least one 
objective. 

All the points which are not dominated by any other point 
s ∈ S, are called Pareto-optimal points. They constitute 
together the Pareto-optimal front ([1, 3]) in the objectives’ 
space. 

Two basic approaches are applied to solve the above 
formulated multi objective problem (1)-(4). The first approach 
is to choose one "best/ final" non-dominated solution among 
many others. Because the set of non-dominated points consists 
of equally good points then additional information for the 
choice is necessary. It comes usually from human factor. In 
other words the so called Decision Maker (DM) evaluates the 
solutions obtained during the process of solution. A number of 
methods realizing this approach exist ([1, 2, 3, 8, 14]). 

The second approach is to find the whole set of non-
dominated points (efficient frontier). This problem is solved 
completely only for linear case ([4, 6, 11, 20]). There exist 
also approximate algorithms applying this approach.  

Evolutionary algorithms seems to be very suitable to apply 
the second approach, namely to find an approximation for the 
whole non-dominated set. Indeed there are a number of EO 
methods ([1, 5, 10]).  

Here an evolutionary algorithm is proposed, which applies 
the first approach. It performs with limited population, but 
large enough to approximate locally the efficient frontier 
directed by the DM's preferences. The iterative procedure is 
repeated until a final solution is found. Thus we exploit the 
advantages of EO approach to generate a good approximation 
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of efficient frontier. Using traditional heuristic scalarizing 
methods there arises the question – how to support the DM in 
setting new preferences. Some of those methods use trade-off, 
other use search in a reference direction, or generate a 
reference points ([12, 15, 16, 18]). In this paper DM can set 
his local preferences at each iteration in terms of desired 
improvements or relaxations of the criteria (as a reference 
point). On this basis a discrete optimization scalarizing 
problem is constructed. A small ranked set of relatively close 
alternatives is defined with the help of this scalarizing 
problem. The ranked set is presented to the DM for selection 
of the most preferred alternative or for entering his/her new 
local preferences. In short the characteristics of the new 
proposed algorithm are the following: 

• A heuristic procedure is used to accelerate the 
moving the whole population towards the Pareto front. It is 
similar to those, described in [9]. In this way we avoid the 
slow speed performance of the evolutionary algorithms.  

• An interaction step is included, where the Decision 
Maker sets a reference point f 

r in the objectives’ space (see 
[13, 17, 19]). The DM has the possibility to change his/her 
preferences periodically and to replace the former reference 
point by a new one. This step ensures the convergence of the 
proposed algorithm to a desired non-dominated solution. 

III. THE PROPOSED EVOLUTIONARY ALGORITHM 

We use a population P of N solutions found during the 
search process.  

We propose a heuristic procedure to move quickly the 
initial generated population to the Pareto-optimal front. For 
this purpose we calculate the direction y = Cref – Ci, where 
Cref is a reference point given by DM and Ci is the weight 
centre of all solutions in P. Then we move the population as 
close as possible to the Pareto-optimal front (reaching 
eventually the boundaries of the system (2)-(3)). We perform 
consecutive steps calculating solution x’ = x + α.y , where α is 
the step length. In case x’ violates any constraint in the system 
(2) or in case the current step in y – direction leads to 
deteriorating the criteria values, the corresponding feasible 
solution is calculated using the Golden section method for line 
search along the segment xx’ and by rounding it to an integer 
solution. The Pareto-optimal front may be located: 

1) on the boundary of the feasible domain. 
2) inside the feasible domain. 
We present below the scheme of this heuristic, reaching 

the Pareto-optimal front in both cases: 

A. Scheme of the proposed heuristic procedure 

We use the function 
1

( ) ( )
k

i
i

x f xϕ
=

= ∑ , where ( )if x is current 

value for the i-th objective, i = 1, …, k.  

   Step: Find the minimal value of the function φ(x) over the 
rays defined by each population solution belonging to the 
initial population P0 and the vector y.  The Golden section 
method is used for this calculation.  
 

The above heuristic is based on the following theoretical 
properties: 

1) The direction y is an improving direction by 
construction. This means that between every two different 
solutions x1 and x2 lying on a ray y→ with starting solution Ci 
the following relations are satisfied: f(x1) ≤ f(x2) or f(x1) ≥  
f(x2), but the solutions x1 and x2 are not incomparable.  

2) The function φ(x) obtains its minimum at a point 
which is located on the Pareto optimal front. 

B. Scalarizing problem formulation 

At each iteration iter a ranked set M ={i1, i2,……, il} of 
alternatives is generated. The first alternative is the current 
preferred alternative and l is the number of generated 
alternatives, which the DM is willing or is able to evaluate at 
this iteration. The DM has to estimate the relatively close 
alternatives and to choose one of them either as a current 
preferred or as the most preferred alternative. In the second 
case the discrete multicriteria choice problem is solved. In the 
first case the DM sets the desired changes of the criteria 
(desired values for improving (relaxing)) in order to search for 
a new better alternative in the reference neighborhood of the 
current preferred alternative.  

 Let h denotes the index of the current preferred 
alternative. Let us introduce the following notations in relation 
to the current preferred alternative: 

≥
kK  - the set of indices of the criteria j ∈ J that the DM 

wants to improve by desired (aspiration) values hjΔ ; 
≤
hK  - is the set of indices of the criteria j ∈ J that the 

DM agrees the values of the criteria to be deteriorated by no 
more than hjδ ; 

0
hK  - the set of indices of the criteria j ∈ J in which the 

DM is not interested concerning alteration at the moment and 
these criteria can be freely altered; 

hja  - the desired (aspiration) value of the criterion with 

an index ≥∈ hKj ; 
≥∈Δ+= hhjhjhj Kjaa ,  

hja  - the value of a criterion with an index ≥∈ hKj  in 
the current preferred alternative; 

jΛ  - the difference between the maximal and minimal 
value for the criterion with an index j; 

ijIijIi
j aia

∈∈
−=Λ minmax  

The set M = (i1, …..il) is computed solving the following 
discrete scalarizing problem: 
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min ( , ) min{max[max( ) / ,

max(( ) / ]}
h

h

hj ij ji I i I j K

hj ij j
j K

S i h a a

a a

≥

≤

∈ ∈ ∈

∈

= − Λ

− Λ
        (5) 

  subject to: 

hjhjij aa δ−≥ , ≤∈ hKj .                                    (6) 
When solving a discrete optimization problem S the value 

of S(i,h) is computed for all alternatives for which the 
conditions (6) are satisfied. Function S(i,h) denotes the 
distance between alternatives i and h with respect to the 
“modified” Chebyshev norm. The alternatives correspond to 
the fitness function values of solutions in the current 
population in the proposed new hybrid algorithm. 

C. Scheme of the new algorithm 

Step 1. Set the iteration counter iter = 0. Generate N 
uniform distributed solutions’ vectors around the Chebyshev 
centre Ch of the feasible domain by using a deviation of ±δ, 
where δ is a % of the corresponding component variation (for 
example, δmax = ±5%). Use them to create the initial 
population Piter .  

Step 2. Find the solutions in Piter whish are the best 
according to the value of each objective. Show them to DM 
and ask him/her to choose one of them as a initial reference 
solution xr, or a group of them, which weight centre will be 
the initial reference solution xr.  The corresponding reference 
point is denoted by f r. Compute the weight centre Ci of all 
solutions Piter. Form the moving direction d = xr – Ci.   

Step 3. Move the population Piter in direction d:   
{Pnew} = {Piter d}. Each solution is moved as close as 
possible to the Pareto-optimal front (reaching the boundaries 
of the system (2)-(3) if necessary) along this direction by 
using the Golden section method for line search as in the 
heuristic procedure. 

Step 4.  Calculate fitness values for each solution in  
Piter using the scalarization function S(i,h) of (5)-(6), where 
i=1,..N; and h denotes the index of the current preferred point. 

Step 5. Arrange all the points corresponding to the 
solutions in Piter in ascending order according their S-values. 
Show the first ten points to DM. DM evaluates visually them 
and if he/she is satisfied by one of them, go to Step 8, 
otherwise DM chooses the current best solution xbest. Set 
iter=iter+1, Piter=Pnew, and go to Step 6. 

Step 6. Compute the weight centre C of the population 
Piter. Form the moving direction p = xbest – C.  Compute a 
series of solutions t j = C + j.p, j = 1,…; and present the 
corresponding points f(t 

j) to the DM as possible reference 
points. The DM chooses one of them as a new reference point 
f r. The corresponding solution is denoted by xr. 

Step 7. Calculate direction d in which will be moved the 
whole population Pite:   d = xr – C.  Go to Step 3. 

Step 8. End.  

IV. ILLUSTRATIVE EXAMPLE 

We consider the following problem: 
Min    f1 = 1/(x1+1), 
Min    f2 = 1/(x2+1), 
Min   f3 = (x1.x2)/(x1+1).(x2+1)2, 

 subject to:   x1
2 + 100x2

2  ≤ 106;  – x1 + 15x2 – 1200 ≤ 0; 
                    0  ≤  x1  ≤  1000;        0  ≤   x2   ≤  100; 

  x1, x2 ∈ Z. 
The search process of one iteration is presented on Fig.1  

 
Legend:   
* –  initial population P0 
Δ – weight centres Ci and Ce 
□ – members of Pe0 
+ –  Ph at the end of Step 2 
x – solutions t j at Step 3 
o – members of  final   
      population  

 – ref. solution xr* 
               

Fig. 1. One iteration 
 

We denote values fi
r =  fi.103. The initial population P0 at Step 

1 is:  x1 = (500; 50), f1
r = (1.996; 19.608; 19.185), x2 = (506; 

29), f2
r = (1.972; 33.333; 32.158), x3 = (482; 30), f3

r = (2.070; 
32.258; 31.163), x4 = (493; 52), f4

r = (2.024; 18.868; 18.474), 
x5 = (477; 41), f5

r = (2.092; 23.810; 23.194), x6 = (485; 35), f6
r 

= (2.058; 27.778; 26.950), x7 = (504; 40), f7
r = (1.980; 24.390; 

23.748), x8 = (487; 41), f8
r = (2.049; 23.810; 23.195), x9 = 

(488; 27), f9
r = (2.045; 35.714; 34.368), x10 =(479; 36), f10

r 
=(2.083; 27.027; 26.242);. At Step 2 the best solutions chosen 
by the DM are x1 and x4. Their weight centre is xr = (497; 51). 
The weight centre of all solutions in the population P0 is Ci = 
(490; 38). So d = xr – Ci = [7; 13]. At Step 3 the whole 
population is moved to the Pareto-optimal front. The 
following solutions are obtained: x1 = (519; 85), f1

r = (1.923; 
11.628; 11.471), x2 = (534; 84), f2

r = (1.869; 11.765; 11.605), 
x3 = (510; 86), f3

r = (1.957; 11.494; 11.340), x4 = (511; 85), f4
r 

= (1.953; 11.628; 11.470), x5 = (502; 86), f5
r = (1.988; 11.494; 

11.340), x6 = (512; 85), f6
r = (1.949; 11.628; 11.470), x7 = 

(527; 84), f7
r = (1.894; 11.765; 11.604), x8 = (510; 86), f8

r = 
(1.957; 11.494; 11.340), x9 = (519; 85), f9

r = (1.923; 11.628; 
11.471), x10 =(506; 86), f10

r =(1.972; 11.494; 11.340);. At Step 
5 are calculated the S-values of all solutions in P. At Stem 6 
as xbest is chosen the solution x10 =(506; 86). The weight 
centre C of all solutions in P is C = (515; 85). The vector p = 
xbest – C = [-9; 1]. For t2 the DM makes a choice of reference 
solution xr = (488; 88) and the corresponding reference point 
is: f r = (2.045; 11.236; 11.087). At Step 7 the vector d = xr – 
C = [-27; 3]. At Step 3 are obtained the solutions: x1 = (492; 
87), f1

r = (2.028; 11.364; 11.212), x2 = (507; 86), f2
r = (1.969; 

11.494; 11.340), x3 = (474; 88), f3
r = (2.105; 11.236; 11.086), 

x4 = (484; 87), f4
r = (2.062; 11.364; 11.211), x5 = (474; 88), f5

r 
= (2.105; 11.236; 11.086), x6 = (485; 87), f6

r = (2.058; 11.364; 
11.211), x7 = (500; 86), f7

r = (1.996; 11.494; 11.339), x8 = 
(483; 87), f8

r = (2.066; 11.364; 11.211), x9 = (492; 87), f9
r = 

(2.028; 11.364; 11.212), x10 =(474; 88), f10
r =(2.105; 11.236; 

11.086);. At Step 4 DM is satisfied by solution x3 = (474; 88), 
f3

r = (2.105; 11.236; 11.086) and the calculations are 
terminated. 
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V. CONCLUSION 

The basic characteristics of the proposed interactive 
evolutionary method solving convex integer multi-criteria 
problems may be summarized as follows: 

• it is an interactive algorithm; 
• the new algorithm is population – based and 

combines a heuristic for fast moving the population to the 
Pareto-optimal front with scalarizing approach to arrange the 
solutions in the current population. 

•  the algorithm proposed explores only a desired part 
of the Pareto optimal front in contrast to other algorithms, 
where the purpose is to obtain a representative sample of the 
whole Pareto-optimal front; 

•  an accelerated moving the whole population to the 
Pareto-optimal front is achieved, leading to better efficiency 
in comparison to the usual evolutionary algorithms; 

•  The increasing the number of objectives in the 
optimization problem does not have essential influence on the 
performance of the search procedure. 

•  The Decision Maker is supported in the choice of a 
suitable reference point, so that he/she can easily direct the 
search process to the desired region.  

The approach demonstrated by the new algorithm may be 
used for solving linear and nonlinear multiple objective 
optimization problems, having continuous and/or integer 
variables. 
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