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Abstract – This paper presents a comparison of the time 
efficiency of parallel implementations of the Cooley-Tukey 
algorithm for computing Galois field expressions for ternary 
logic functions. The examined parallel implementations are an 
MPI (Message Passing Interface) implementation, processed on a 
multicore CPU (central processing unit), and CUDA (Compute 
Unified Device Architecture) and OpenCL (Open Computing 
Language) implementations, processed on the GPU (graphics 
processing unit). Program running times are compared using 
randomly-generated ternary functions with different number of 
variables. The experiments show that the MPI parallel 
implementation is up to 4.6 times faster than the C++ sequential 
implementation when the algorithm is performed on a quad-core 
CPU. The CUDA and OpenCL implementations on the GPU 
with 8 streaming multiprocessors are up to 30 and 22 times, 
respectively, faster than the C++ CPU implementation. These 
speed-ups are up to 7 and 4.5 times, respectively, when compared 
with the MPI CPU implementation. The CUDA GPU 
implementation is from to 2% to 53% faster than the OpenCL 
implementation, depending on the number of variables in the 
considered function.         
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I. INTRODUCTION 

Moore’s law has remained valid during the last decade only 
by a switch to multicore and manycore parallel processor 
architectures [4]. Today’s computer systems are typically 
composed of multicore CPUs (central processing units) and 
manycore GPU (graphics processing units), but also feature 
specialized processors such as DSPs (digital signal 
processors). In order to efficiently use these heterogeneous 
and parallel computational platforms, existing parallel 
programming standards for CPUs, such as MPI (Message 
Passing Interface) [3, 12], were extended, and completely new 
computational and programming models for GPUs, such as 
CUDA [8, 10] and OpenCL [7, 9], were developed.            

This paper is a case study on performance of MPI, CUDA, 
and OpenCL parallel implementations of the Cooley-Tukey 
algorithm for computing Galois field (GF) expressions for 
ternary logic functions. Since the time for computing a GF(3) 
expression is exponential in the number of variables of a 
given function, processing time is often a limiting factor for 
practical applications of GF-expressions, in spite of the 

existence of FFT (fast Fourier transform)-like algorithms [13]. 
Therefore, the development of parallel implementations of 
algorithms for computing Galois field expressions is an 
important task for the application of these expressions in 
practice. The case study presented in this paper aims at 
identifying the computing platform and programming 
framework which is most suitable for the considered 
computations in terms of processing times.    

The paper is organized as follows. In Section II we briefly 
define the Galois field expressions for ternary logic functions 
and Cooley-Tukey algorithms for computing the coefficients 
in these expressions. To make this paper self-contained, basic 
information about MPI, CUDA, and OpenCL parallel 
programming models is provided in Section III. Details of 
mappings and implementations are discussed in Section IV. 
Section V presents the experimental results. Section VI offers 
some conclusions and directions for further work.     

II. GALOIS FIELD EXPRESSIONS                              
FOR TERNARY FUNCTIONS 

In this section we present the definition of the Galois field 
expressions for ternary logic functions and Cooley-Tukey 
algorithms for computing the coefficients in these 
expressions. For more detailed discussions of these topics, we 
refer to [13]. 

Each ternary function of n variables can be represented as a 
polynomial of the form 
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The symbol ⊗ denotes the Kronecker product. Additions and 
multiplications are carried out modulo 3, i.e., in GF(3). 

Therefore, the set of basic functions for n = 1 is given by 
columns of the matrix  
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In matrix notation, the coefficients gi in the Galois field 
expression for a function f, specified by the function vector 

[ (0), (1),..., (3 1)] ,n Tf f f= −F  are computed as 

,3 3 ( ) ,f GF GF n=S G F    (4) 
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Example 1. For n = 2, the Galois field transform matrix in 
GF(3) is defined as 
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Example 2. For a ternary function of two variables f(x1, x2) 
given by the vector F = [0,1,2,0,2,1,2,0,0]T, the GF(3) 
transform matrix is as in Example 1.  

From (4), the coefficients in the GF(3) expression for f are 
computed as 

,3 3 (2) [0,1,0, 2,1,1,1,0,2] .T
f GF GF= =S G F  

This computational complexity is O(N2), where N = 3n is 
the length of the function vector.  

The same computation can be performed using the Cooley-
Tukey FFT-like algorithm, with an O(NlogN) asymptotical 
time complexity [13]. The algorithm is based on the 
factorization of the GF(3) transform matrix as 

3 1 2(2)GF =G C C .    (7) 
where 

1 3 3(1) (1),GF= ⊗C G I and 2 3 3(1) (1).GF= ⊗C I G           (8) 
Each of the matrices C1 and C2 describes a step in the 

Cooley-Tukey FFT-like algorithm for computing the 
coefficients in Sf,3GF. The basic transform matrix G3GF (1) 
specifies the elementary butterfly operation in the algorithm. 
Fig. 1 shows the Cooley-Tukey FFT for a function of two 
variables. The computation through this algorithm is 
performed as 

                  ,3 3 1 2(2) ( ).f GF GF= =S G F C C F                (9) 

The first step of the algorithm computes 

[ ]
1 ,3 2 0,1,0,0,2,0,2,0,1 ,T
f GF = =S C F        (10) 

while the second step produces   

[ ]
1,2 1,3 1 ,3 0,1,0, 2,1,1,1,0, 2 .T
f GF f GF= =S C S              (11) 

III. PARALLEL PROGRAMMING FRAMEWORKS 

MPI has been, since its inception in 1991, the dominant 
programming model for parallel scientific and high-
performance computing on CPUs [4]. It supports both shared 
and distributed memory systems, and enables efficient scaling 
of program execution from environments with a couple of 
processing cores to large computing clusters. For more details 
on MPI, we refer to [3, 12]. 

The computational approach based on using graphics 
processing units for performing general-purpose algorithms in 
a highly parallel manner, called the GPGPU (general-purpose 
computing on GPUs) or GPU computing, has recently 
attracted significant interest of researchers and proved its 
value in scientific and high-performance computing [5, 6]. 
GPU computing was made possible by the evolution of GPU 
architectures [1, 11]. The appearance of Nvidia CUDA and 
OpenCL programming frameworks made the GPU 
computational resources more accessible to researchers and 
programmers. For more details on GPU computing and 
CUDA and OpenCL frameworks, we refer to [2, 7, 8, 9, 10, 
11].  

IV. MAPPINGS AND IMPLEMENTATIONS OF THE 
ALGORITHM  

The key issues in efficient mapping of the Cooley-Tukey 
algorithm to parallel computing architectures are: 

1. The implementation of address arithmetic, i.e., 
computations needed for data fetching and storing, and  

2. Organization of computations, i.e. distribution of the 
butterfly operations over processing elements.  

 

Fig. 1. Signal flow graph for the Cooley-Tukey algorithm in GF(3)   
for n = 2. Solid lines carry weight 1 and dashed lines carry weight 2. 
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In both CPU and GPU parallel implementations of the 
Cooley-Tukey algorithm, the index l of the memory location 
which holds the first operand for each butterfly is computed as 

l  = b % d +  r · d · (b \ d),   (12) 
where b is a positive integer that uniquely identifies the 
butterfly, r is the transform radix, d is the distance between 
the elements over which the butterfly performs the 
computations in the current step of the algorithm, and \ stands 
for integer division. The value of d for the k-th step is 
computed as d = rn-k.  

The other operands for the butterfly are fetched from the 
locations with indices li computed as 

          li = l + i · d,   (13) 
for i = 1, 2,…, r-1. Notice that memory locations of the 
operands on which each butterfly operates change with each 
algorithm step. 

In the MPI implementation, each processor core performs 
N/(3*nprocs) butterflies, where nprocs is the number of active 
CPU processes. The number of processes typically equals the 
number of CPU cores. Switching between butterflies assigned 
to the same process is done as  

count = N/(3*nprocs), 
start = id * count, 
stop = start + count, 

where id is the unique identifier of the process. These 
variables are used in the double while loop that implements 
the butterfly computations as   
 

while (d  >=  1) 
{    
    k = start; 
    while (k  <  stop) 
   {   

// data fetching, followed by 
  // computations in the butterfly  
         // defined by G3GF (1) and storing of results 
  k = k + 1 
    } 
    d = d / 3  
} 

 
When computing the Galois field expressions on GPUs, a 

more fine-grained parallel computing model is used. In this 
model, each thread performs a single butterfly over different 
elements of the function vector F. Therefore, the variable b in 
(12) corresponds to a unique identifier of the thread, usually 
denoted as tid. Therefore, the computations are divided upon 
N/3 threads in total.  

Both CUDA and OpenCL implementations are composed 
of the host program, which creates data structures and controls 
the execution, and the device program, which implements the 
butterfly operations. The device program contains the 
description of computations for a single thread, defined by 
G3GF (1), and tid is used to distinguish the operands processed 
by each thread.      

V. EXPERIMENTS 

A. Experimental Settings 

The experiments reported in this section are performed on 
platforms specified in Table I.  

Since the computations are performed over function 
vectors, the running time of the implementations is 
independent of function values. Therefore, the experiments 
are performed using randomly generated ternary functions 
with different number of variables. The presented values for 
the CPU and GPU computation times are average values for 
10 program executions. The source code for the C/C++ 
implementation is compiled for the x64 platform using the 
maximum level of performance-oriented optimizations. The 
presented GPU processing times include the times for data 
transfer between the host and the device and vice versa, as 
well as times for setting kernel arguments and the kernel calls. 

TABLE I 
EXPERIMENTAL PLATFORM 

CPU Intel Core i7-920 quad-core (2.66GHz) 
Memory 12GB DDR3-2000 

Operating 
System Windows 7 Ultimate 64-bit 

Development 
Environment MS Visual Studio 2010 Ultimate 

      Software Development Kit 
MPI Microsoft HPC Server 2008 –MPICH2 

CUDA 
OpenCL Nvidia GPU Computing 4.0 

GPU 
core frequency 

memory 
number of cores 

Nvidia GTX 650 Ti 
900 MHz 
1 GB GDDR5 4.2 GHz 
384 

B. Experimental results 

The summary of the results considering processing times 
for different parallel implementations of the Cooley-Tukey 
algorithm for computing Galois field expressions for ternary 
functions is presented in Table II and Fig. 2.   

The MPI implementation of the algorithm is up to 4.6 times 
faster than the respective C++ sequential implementation, 
when both implementations are processed on a quad-core 
CPU. This difference is almost constant throughout the 
considered range of functions. The speed-ups are larger than 
the number of available CPU processing cores due to Intel’s 
Hyper Threading technology which allows 2 threads to exist 
simultaneously per each core. CUDA and OpenCL 
implementations on the GPU are up to 30 and 22 times, 
respectively, faster than the C++ CPU implementation. These 
speed-ups are up to 7 and 4.5 times, respectively, when 
compared with the MPI implementation. The CUDA GPU 
implementation is from to 2% to 53% faster than the 
respective OpenCL implementation. For n ≤ 15, the difference 
in speed between CUDA and OpenCL is almost negligible, 
but as n increases CUDA becomes significantly faster.          
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TABLE II 
COMPUTATION TIMES IN [SECONDS] FOR DIFFERENT IMPLEMENTATIONS 

n 8 10 12 14 15 16 17 

CPU 
C++ 0.001 0.005 0.029 0.302 0.973 3.122 10.025 

MPI 0.000 0.000 0.006 0.065 0.231 0.695 2.157 

GPU 
OpenCL 0.000 0.000 0.001 0.016 0.047 0.160 0.492 

CUDA 0.000 0.000 0.001 0.015 0.046 0.118 0.321 

 
VI. CONCLUSIONS 

In this paper, we presented a comparison of time efficiency 
of parallel algorithm implementations for computing Galois 
field expressions for ternary functions. The parallel 
implementation for CPUs was developed using Microsoft’s 
MPI, while the two parallel implementations for GPUs were 
developed using CUDA and OpenCL. The experiments show 
that the GPU implementations outperformed the MPI 
implementation by a factor of up to 7, with CUDA 
implementation being faster than the OpenCL one by up to 
53%.  Therefore, the conclusion of the presented case study is 
that the GPU platform is better suited for performing the 
parallel implementations of the considered algorithm, with 
CUDA being the technology of choice when computing time 
is the most important limiting factor.     
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Fig. 1. Running times in [seconds] for different implementations of  
the GF(3) Cooley-Tukey FFT. 
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