

Efficient Parallel Computation of the
Galois Field Expressions for Ternary Logic Functions

Dušan B. Gajić1 and Radomir S. Stanković1

Abstract – This paper presents a comparison of the time
efficiency of parallel implementations of the Cooley-Tukey
algorithm for computing Galois field expressions for ternary
logic functions. The examined parallel implementations are an
MPI (Message Passing Interface) implementation, processed on a
multicore CPU (central processing unit), and CUDA (Compute
Unified Device Architecture) and OpenCL (Open Computing
Language) implementations, processed on the GPU (graphics
processing unit). Program running times are compared using
randomly-generated ternary functions with different number of
variables. The experiments show that the MPI parallel
implementation is up to 4.6 times faster than the C++ sequential
implementation when the algorithm is performed on a quad-core
CPU. The CUDA and OpenCL implementations on the GPU
with 8 streaming multiprocessors are up to 30 and 22 times,
respectively, faster than the C++ CPU implementation. These
speed-ups are up to 7 and 4.5 times, respectively, when compared
with the MPI CPU implementation. The CUDA GPU
implementation is from to 2% to 53% faster than the OpenCL
implementation, depending on the number of variables in the
considered function.

Keywords – Spectral transforms, multiple-valued logic, fast

Fourier transform, Galois field expressions, Cooley-Tukey
algorithm, parallel implementations, GPU computing, MPI,
CUDA, OpenCL.

I. INTRODUCTION

Moore’s law has remained valid during the last decade only
by a switch to multicore and manycore parallel processor
architectures [4]. Today’s computer systems are typically
composed of multicore CPUs (central processing units) and
manycore GPU (graphics processing units), but also feature
specialized processors such as DSPs (digital signal
processors). In order to efficiently use these heterogeneous
and parallel computational platforms, existing parallel
programming standards for CPUs, such as MPI (Message
Passing Interface) [3, 12], were extended, and completely new
computational and programming models for GPUs, such as
CUDA [8, 10] and OpenCL [7, 9], were developed.

This paper is a case study on performance of MPI, CUDA,
and OpenCL parallel implementations of the Cooley-Tukey
algorithm for computing Galois field (GF) expressions for
ternary logic functions. Since the time for computing a GF(3)
expression is exponential in the number of variables of a
given function, processing time is often a limiting factor for
practical applications of GF-expressions, in spite of the

existence of FFT (fast Fourier transform)-like algorithms [13].
Therefore, the development of parallel implementations of
algorithms for computing Galois field expressions is an
important task for the application of these expressions in
practice. The case study presented in this paper aims at
identifying the computing platform and programming
framework which is most suitable for the considered
computations in terms of processing times.

The paper is organized as follows. In Section II we briefly
define the Galois field expressions for ternary logic functions
and Cooley-Tukey algorithms for computing the coefficients
in these expressions. To make this paper self-contained, basic
information about MPI, CUDA, and OpenCL parallel
programming models is provided in Section III. Details of
mappings and implementations are discussed in Section IV.
Section V presents the experimental results. Section VI offers
some conclusions and directions for further work.

II. GALOIS FIELD EXPRESSIONS
FOR TERNARY FUNCTIONS

In this section we present the definition of the Galois field
expressions for ternary logic functions and Cooley-Tukey
algorithms for computing the coefficients in these
expressions. For more detailed discussions of these topics, we
refer to [13].

Each ternary function of n variables can be represented as a
polynomial of the form

3 1

1 2
0

(, ,...,) ,
n

n i i
i

f x x x g φ
−

=

= ∑ (1)

where {0,1, 2,3},ig ∈ and iφ are the product terms defined in
the natural (Hadamard) order as elements of the vector

3 ()GF nX defined as

0 1 2
3 3 31

() (1), (1) [].
n

GF GF GF i i ii
n x x x

=
= ⊗ =X X X (2)

The symbol ⊗ denotes the Kronecker product. Additions and
multiplications are carried out modulo 3, i.e., in GF(3).

Therefore, the set of basic functions for n = 1 is given by
columns of the matrix

3

1 0 0
(1) 1 1 1 .

1 2 1
GF

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

X (3)

In matrix notation, the coefficients gi in the Galois field
expression for a function f, specified by the function vector

[(0), (1),..., (3 1)] ,n Tf f f= −F are computed as

,3 3 () ,f GF GF n=S G F (4)

1Dušan B. Gajić and Radomir S. Stanković are with the University
of Niš, Faculty of Electronic Engineering, Aleksandra Medvedeva
14, 18000 Niš, Serbia, E-mails: dule.gajic@gmail.com,
radomir.stankovic@gmail.com.

261

where

1
3 3 3 31

1 0 0
() (1), (1) ((1)) 0 2 1 .

2 2 2

n

GF GF GF GFi
n −

=

⎡ ⎤
⎢ ⎥= ⊗ = = ⎢ ⎥
⎢ ⎥⎣ ⎦

G G G X (5)

Example 1. For n = 2, the Galois field transform matrix in
GF(3) is defined as

3 3 3

1 0 0 1 0 0
(2) (1) (1) 0 2 1 0 2 1

2 2 2 2 2 2
GF GF GF

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⊗ = ⊗⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

G G G

1 0 0 0 0 0 0 0 0
0 2 1 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
0 0 0 2 0 0 1 0 0

.0 0 0 0 1 2 0 2 1
0 0 0 1 1 1 2 2 2
2 0 0 2 0 0 2 0 0
0 1 2 0 1 2 0 1 2
1 1 1 1 1 1 1 1 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (6)

Example 2. For a ternary function of two variables f(x1, x2)
given by the vector F = [0,1,2,0,2,1,2,0,0]T, the GF(3)
transform matrix is as in Example 1.

From (4), the coefficients in the GF(3) expression for f are
computed as

,3 3 (2) [0,1,0, 2,1,1,1,0,2] .T
f GF GF= =S G F

This computational complexity is O(N2), where N = 3n is
the length of the function vector.

The same computation can be performed using the Cooley-
Tukey FFT-like algorithm, with an O(NlogN) asymptotical
time complexity [13]. The algorithm is based on the
factorization of the GF(3) transform matrix as

3 1 2(2)GF =G C C . (7)
where

1 3 3(1) (1),GF= ⊗C G I and 2 3 3(1) (1).GF= ⊗C I G (8)
Each of the matrices C1 and C2 describes a step in the

Cooley-Tukey FFT-like algorithm for computing the
coefficients in Sf,3GF. The basic transform matrix G3GF (1)
specifies the elementary butterfly operation in the algorithm.
Fig. 1 shows the Cooley-Tukey FFT for a function of two
variables. The computation through this algorithm is
performed as

 ,3 3 1 2(2) ().f GF GF= =S G F C C F (9)

The first step of the algorithm computes

[]
1 ,3 2 0,1,0,0,2,0,2,0,1 ,T
f GF = =S C F (10)

while the second step produces

[]
1,2 1,3 1 ,3 0,1,0, 2,1,1,1,0, 2 .T
f GF f GF= =S C S (11)

III. PARALLEL PROGRAMMING FRAMEWORKS

MPI has been, since its inception in 1991, the dominant
programming model for parallel scientific and high-
performance computing on CPUs [4]. It supports both shared
and distributed memory systems, and enables efficient scaling
of program execution from environments with a couple of
processing cores to large computing clusters. For more details
on MPI, we refer to [3, 12].

The computational approach based on using graphics
processing units for performing general-purpose algorithms in
a highly parallel manner, called the GPGPU (general-purpose
computing on GPUs) or GPU computing, has recently
attracted significant interest of researchers and proved its
value in scientific and high-performance computing [5, 6].
GPU computing was made possible by the evolution of GPU
architectures [1, 11]. The appearance of Nvidia CUDA and
OpenCL programming frameworks made the GPU
computational resources more accessible to researchers and
programmers. For more details on GPU computing and
CUDA and OpenCL frameworks, we refer to [2, 7, 8, 9, 10,
11].

IV. MAPPINGS AND IMPLEMENTATIONS OF THE
ALGORITHM

The key issues in efficient mapping of the Cooley-Tukey
algorithm to parallel computing architectures are:

1. The implementation of address arithmetic, i.e.,
computations needed for data fetching and storing, and

2. Organization of computations, i.e. distribution of the
butterfly operations over processing elements.

Fig. 1. Signal flow graph for the Cooley-Tukey algorithm in GF(3)
for n = 2. Solid lines carry weight 1 and dashed lines carry weight 2.

262

In both CPU and GPU parallel implementations of the
Cooley-Tukey algorithm, the index l of the memory location
which holds the first operand for each butterfly is computed as

l = b % d + r · d · (b \ d), (12)
where b is a positive integer that uniquely identifies the
butterfly, r is the transform radix, d is the distance between
the elements over which the butterfly performs the
computations in the current step of the algorithm, and \ stands
for integer division. The value of d for the k-th step is
computed as d = rn-k.

The other operands for the butterfly are fetched from the
locations with indices li computed as

 li = l + i · d, (13)
for i = 1, 2,…, r-1. Notice that memory locations of the
operands on which each butterfly operates change with each
algorithm step.

In the MPI implementation, each processor core performs
N/(3*nprocs) butterflies, where nprocs is the number of active
CPU processes. The number of processes typically equals the
number of CPU cores. Switching between butterflies assigned
to the same process is done as

count = N/(3*nprocs),
start = id * count,
stop = start + count,

where id is the unique identifier of the process. These
variables are used in the double while loop that implements
the butterfly computations as

while (d >= 1)
{
 k = start;
 while (k < stop)
 {

// data fetching, followed by
 // computations in the butterfly
 // defined by G3GF (1) and storing of results
 k = k + 1
 }
 d = d / 3
}

When computing the Galois field expressions on GPUs, a

more fine-grained parallel computing model is used. In this
model, each thread performs a single butterfly over different
elements of the function vector F. Therefore, the variable b in
(12) corresponds to a unique identifier of the thread, usually
denoted as tid. Therefore, the computations are divided upon
N/3 threads in total.

Both CUDA and OpenCL implementations are composed
of the host program, which creates data structures and controls
the execution, and the device program, which implements the
butterfly operations. The device program contains the
description of computations for a single thread, defined by
G3GF (1), and tid is used to distinguish the operands processed
by each thread.

V. EXPERIMENTS

A. Experimental Settings

The experiments reported in this section are performed on
platforms specified in Table I.

Since the computations are performed over function
vectors, the running time of the implementations is
independent of function values. Therefore, the experiments
are performed using randomly generated ternary functions
with different number of variables. The presented values for
the CPU and GPU computation times are average values for
10 program executions. The source code for the C/C++
implementation is compiled for the x64 platform using the
maximum level of performance-oriented optimizations. The
presented GPU processing times include the times for data
transfer between the host and the device and vice versa, as
well as times for setting kernel arguments and the kernel calls.

TABLE I
EXPERIMENTAL PLATFORM

CPU Intel Core i7-920 quad-core (2.66GHz)
Memory 12GB DDR3-2000

Operating
System Windows 7 Ultimate 64-bit

Development
Environment MS Visual Studio 2010 Ultimate

 Software Development Kit
MPI Microsoft HPC Server 2008 –MPICH2

CUDA
OpenCL Nvidia GPU Computing 4.0

GPU
core frequency

memory
number of cores

Nvidia GTX 650 Ti
900 MHz
1 GB GDDR5 4.2 GHz
384

B. Experimental results

The summary of the results considering processing times
for different parallel implementations of the Cooley-Tukey
algorithm for computing Galois field expressions for ternary
functions is presented in Table II and Fig. 2.

The MPI implementation of the algorithm is up to 4.6 times
faster than the respective C++ sequential implementation,
when both implementations are processed on a quad-core
CPU. This difference is almost constant throughout the
considered range of functions. The speed-ups are larger than
the number of available CPU processing cores due to Intel’s
Hyper Threading technology which allows 2 threads to exist
simultaneously per each core. CUDA and OpenCL
implementations on the GPU are up to 30 and 22 times,
respectively, faster than the C++ CPU implementation. These
speed-ups are up to 7 and 4.5 times, respectively, when
compared with the MPI implementation. The CUDA GPU
implementation is from to 2% to 53% faster than the
respective OpenCL implementation. For n ≤ 15, the difference
in speed between CUDA and OpenCL is almost negligible,
but as n increases CUDA becomes significantly faster.

263

TABLE II
COMPUTATION TIMES IN [SECONDS] FOR DIFFERENT IMPLEMENTATIONS

n 8 10 12 14 15 16 17

CPU
C++ 0.001 0.005 0.029 0.302 0.973 3.122 10.025

MPI 0.000 0.000 0.006 0.065 0.231 0.695 2.157

GPU
OpenCL 0.000 0.000 0.001 0.016 0.047 0.160 0.492

CUDA 0.000 0.000 0.001 0.015 0.046 0.118 0.321

VI. CONCLUSIONS

In this paper, we presented a comparison of time efficiency
of parallel algorithm implementations for computing Galois
field expressions for ternary functions. The parallel
implementation for CPUs was developed using Microsoft’s
MPI, while the two parallel implementations for GPUs were
developed using CUDA and OpenCL. The experiments show
that the GPU implementations outperformed the MPI
implementation by a factor of up to 7, with CUDA
implementation being faster than the OpenCL one by up to
53%. Therefore, the conclusion of the presented case study is
that the GPU platform is better suited for performing the
parallel implementations of the considered algorithm, with
CUDA being the technology of choice when computing time
is the most important limiting factor.

ACKNOWLEDGEMENTS

The research reported in this paper is partly supported by
the Ministry of Education and Science of the Republic of
Serbia, project OI 174026 (2011-2014).

REFERENCES
[1] T. M. Aamodt, “Architecting graphics processors for non-

graphics compute acceleration”, in Proc. 2009 IEEE Pacific
Rim Conf. Communications, Computers & Signal Processing,
Victoria, BC, Canada, 2009.

[2] Advanced Micro Devices, Inc., “AMD Accelerated Parallel
Processing OpenCL Programming Guide”, available from:
http://developer.amd.com /sdks/AMDAPPSDK, [accessed 18
March 2013].

[3] Argonne National Laboratory, “MPICH – High Performance
and Portable MPI”, available from: http://www.mpich.org,
[accessed 15 April 2013].

[4] K. Asanović, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K.
Keutzer, D. Patterson, W. Plishker, J. Shalf, S. Williams, and K.
Yelick, “The Landscape of Parallel Computing Research: A
View from Berkeley”, UC Berkeley Technical Report No.
UCB/EECS-2006-183, 2006.

[5] A. R. Brodtkorb, M. L. Sætra, T. R. Hagen, “Graphics
processing unit (GPU) programming strategies and trends in
GPU computing”, Journal of Parallel and Distributed
Computing, Vol. 73, No. 1, 2013, pp. 4-13.

[6] D. B. Gajić, R. S. Stanković, "Computing spectral transforms
used in digital logic on the GPU", in GPU Computing with
Applications in Digital Logic, J. Astola, M. Kameyama, M.
Lukac, R. S. Stanković (eds.), TICSP, Tampere, Finland, 2012,
pp. 25-62.

[7] B. R. Gaster, L. Howes, D. Kaeli, P. Mistry, D. Schaa,
Heterogeneous Computing with OpenCL, Elsevier, 2011.

[8] D. Kirk, W. M. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

[9] Khronos,”OpenCL Specification 1.2”, Khronos OpenCL
Working Group, 2011.

[10] Nvidia, Nvidia CUDA Programming Guide, available from:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html [accessed 18 March 2013].

[11] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.
Phillips, “GPU computing”, Proc. of the IEEE, Vol. 96, No. 5,
2008, pp. 279–299.

[12] P. Pacheco, An Introduction to Parallel Programming, Elsevier,
2011.

[13] R. S. Stanković, J. T. Astola, C. Moraga, Representation of
Multiple-Valued Functions, Morgan & Claypool Publishers,
2012.

Fig. 1. Running times in [seconds] for different implementations of
the GF(3) Cooley-Tukey FFT.

264

