

Cache Misses Challenge to Modern Processor

Architectures
Milco Prisaganec

1
and Pece Mitrevski

2

Abstract – The increase of cores by replication, the increase of

threads in the core, the usage of several levels of cache memory

and shared memory in the processor are the base for increased

processing power, but also the reason for cache misses. These, in

turn, increase the average memory access time and decrease

processor performance. We performed simulations of different

configurations using SMPCache (Simulator for Cache Memory

Systems on Symmetric Multiprocessors) and conclude that

commercial architectures need to implement techniques for

increasing memory level parallelism efficiency, in order to

reduce the number of cache misses.

Keywords – Memory latency, MLP, memory level parallelism,

multi core processor, cache miss.

I. INTRODUCTION

Memory latency is the bottleneck at out-of-order instruction

execution in modern high-performance processors. With the

increase of the difference between processor and memory

speeds, stalls become more frequent because of cache misses,

and penalties can even be a few hundred cycles. The modern

architecture of multi-core processors that share same memory

is enhancing the complexity of this problem.

Memory architecture is the basic technique for depleting

memory latency. But at the same time it is the reason for the

appearance of cache misses that damage processor

performance. In this paper we used a processor architecture

simulator and using different benchmarks we counted the

cache misses and established what they depend on.

In the second part we present the basics of Memory Level

Parallelism (MLP) and its significance for processor

performance. Then, in the third part we present some

techniques for increasing the memory level parallelism

efficiency. The fourth part gives the results we gathered using

a higher processor architecture simulator and the next one,

part five, analyzes the results and gives conclusions that might

show useful for researchers and designers for future processor

development.

II. THE PARADIGM OF MEMORY LEVEL

PARALLELISM (MLP)

The basic goal of processor designers is getting as higher

performance as possible, for a lower price. At the beginning,

the increase of performance was caused by the increase of

frequency and number of transistors in the processor [1].

Reaching the upper frequency limit of 4 GHz and the increase

of energy consumption are the basic physical limitations for

further performance boost. Designers find the solution in

architecture with out-of-order instruction execution [3], i.e.

Instruction Level Parallelism (ILP) [2,5,10]. That would

enable a wider instruction pipeline through the processor and

a larger number of executed instructions per cycle. Intel’s

analysis shows that ILP affected the performance increase

until year 2000 and then it lost its power. Some authors go far

enough to argue that ILP even needs to be dismissed, because

the enlarged instruction window is the reason for cache

misses. Memory latency decreases with the implementation of

memory hierarchy, but with consequent cache misses. The

processor for each cache miss penalty has to pay hundreds of

cycles [3].

MLP is a concept that needs to enable parallel execution of

more memory operations in order to avoid cache misses and

memory latency. The concept of parallel execution of more

memory instructions (MLP) is used as an idea for hiding high

memory latency. Its goal is to decrease the number of cache

misses, i.e. to bring the needed data to L1 before the processor

issues a request for access to them.

III. TECHNIQUES TO INCREASE MLP

The penalties that are paid by the processor because of

cache misses significantly decrease its performance. The goal

of these techniques is to unblock the processor and to provide

a continuous pipeline with parallel execution of more memory

operations.

One of the ideas for unblocking the processor is enlarging

the instruction window. The implementation of hardware

leads to increased energy consumption. In [4] the technique of

Runahead execution which succeeds at virtually enlarging the

instruction window is given. When the processor is blocked

with a long latency instruction the status of the architectural

registers is preserved. After that the processor enters

“runahead mode”. In that moment a fake result for the stalled

instruction is delivered which eliminates it from the

instruction window. That allows the processor to unblock and

keep on with the continuous execution of the next

instructions. After that, the instructions that follow after the

stalled one are also falsely executed from the instruction

window. But in this mode they don’t regenerate the status of

the registers. When the stalled instruction will be executed,

the processor returns to “normal mode”. It retrieves the saved

status of the registers. Then it starts re-executing the

instructions, starting with the stalled one.

1Milco Prisaganec is with the Faculty of Administration and

Information Systems Management, University “St. Kliment

Ohridski”, Bitola, Macedonia, E-Mail: milco.prisaganec@gmail.com
2Pece Mitrevski is with the Department of Computer Science and

Engineering, Faculty of Technical Sciences, University “St. Kliment

Ohridski”, Bitola, Macedonia, E-Mail: pece.mitrevski@uklo.edu.mk

273

When a cache miss occurs, the processor resources are

blocked by the instructions dependent on the instruction that

caused the miss. The Continual Flow Pipelines (CFP)

technique, analyzed in [9], allows uninterrupted execution of

the independent instructions by the instruction that misses. It

enables liberating of the blocked resources and allocating

them to the independent instructions, which keeps the pipeline

undamaged. The idea of CFP is to eliminate the instruction

that missed and the instructions that depend on it from the

pipeline, thus liberating the resources. By the time the

instruction with a miss is released, the resources are liberated

and independent instructions from the cache miss can be

executed.

The enlargement of the instruction window causes

implementing a larger ROB in the processor. The Out of order

commit technique [7] includes using control points, which

really give a picture of the state of the processor in a given

moment, enables efficient out-of-order execution of the

instructions without a ROB structure.

Most of the processor performance increasing techniques

that use MLP is trying to parallelize the cache misses. That

way, after a certain time interval several cache misses would

be resolved. But that is the case when a few sequential cache

misses appear. The authors [8] point out that if the

replacements in cache memory are done consciously, most of

the isolated misses can be avoided.

Modern processors implement more threads in every core.

That allows parallel execution of more processes. When the

thread gets blocked in the processor, it holds the resources

causing a bottleneck which blocks the remaining threads. To

avoid the previous limitations in [6] an Aware Runahead

Threads policy has been proposed. The idea of this policy is

that runahead threads should be used only if there are

conditions for memory level parallelism in the near future, if

not the thread is blocked and the speculative instruction

execution is not done.

IV. TESTING PROCESSOR ARCHITECTURES WITH A

SIMULATOR

On more occasions in this paper we underlined that for

every cache miss the processor pays penalties - as many

cycles as needed for the data to be brought into cache

memory. The decrease in processor performance depends on

the number of cache misses, i.e. the time spent resolving

cache misses. That’s why the goal of this paper is to present

what is really happening at the time of communication

between the processor and the memory system.

For that purpose we used the Simulator for Cache Memory

Systems on Symmetric Multiprocessors (SMPCache), a tool

from the Department of Computer and Communication

Technologies at the University Extremadura Escuela

Politecnica in Spain. The simulator enables configuration of

different processor architectures with changes in these

parameters: the number of processors, cache coherence

protocol of the bus, schemes for bus arbitration, word length,

number of words in a block, the size of basic memory, the

number of cache memory levels, cache memory mapping,

cache memory blocks, replacement policies and writing in

cache memory.

After the definition of a certain architecture of the cache

memory system, the same is tested using benchmarks from the

simulator itself. There are two groups of benchmarks: nine

for single processor architecture and four for core architecture.

After the testing, the simulator presents the following

measured characteristics of the cache memory system: number

of bus transactions, number of blocks transported across the

bus, number of memory accesses (taking an instruction,

reading data, writing data), number of hits and misses in the

cache memory.

Using the simulator, our goal was to show the cache misses,

to count them and show what they depend on in single-core

and multi-core processors.

A. How Cache Memory Size Influences Cache Misses

The purpose of this testing was to show how the

enlargement of cache memory influences the number of cache

misses. We have tested both a single-core and a multi-core

architecture. In both cases there is the same conclusion. The

configuration of the tested multi-core architecture was the

following: 4 core processor, MESI cache coherence protocol,

word length - 8 bits, block size - 256 words. The basic

memory size is 1GB. The cache memory was split (instruction

and data), two-way set associative, with LRU replacement

policy.

We used Simple64 as a benchmark, coded for use on a

multi-core processor. During the testing we only changed the

size of data and instruction cache memory: 2x4, 2x8, 2x16,

2x32, 2x64, 2x128, 2x256, and the results are shown on Fig.1.

Fig. 1. Cache misses dependency on cache memory size

Fig. 1 shows the dependency between the percentage of

cache misses and cache memory size. The graph shows how

with the increase of cache memory the number of cache

misses almost exponentially decreases. But after the increase

surpasses 16Kbytes, its effect on the number of cache misses

becomes almost nonexistent. We use the formula Eq(1) to see

how cache misses affect processor performance:

 (1)

where:

 Тav – Average memory access time

 Тat – Cache memory access time

0%

20%

40%

60%

80%

100%

2 X 4 2 X 8 2 X 16 2 X 32 2 X 64 2 X 1282 X 256

cache misses

274

 Pcm – Percentage of cache misses

 Tp – Time of cache miss penalty

We roughly determined the average access time at cache

memory size of 256Kbytes.

While calculating, we assume that the data that is not found

in the cache is taken over from L2 of cache memory instead

from main memory, trying to be as closer as possible to

commercial processors. The last result shows that there is a

big part of average memory access time that is a consequence

from cache misses. This means that the penalty paid for cache

misses almost doubles the average memory access time, thus

decreasing processor performance.

While analyzing the measured results, we came to a

significant result shown on Fig. 2.

Fig. 2. Load and store cache misses

The graph shows us that for a cache memory with a small

size (2x4Kbytes) the percentage of reading and writing cache

misses is almost the same. But, with the increase of cache

memory to value of 2x256Kbytes, the percentage of reading

cache misses decreased for 85%, which is not the case with

writing cache misses that have an insignificant decrease of

only 20%.

B. How Memory Hierarchy Influences Cache Misses

The purpose of benchmarks in this part is to analyze the

changes concerning cache misses that appear in a memory

system when cache hierarchy is introduced. The simulated

architecture has the following characteristics: A single-core

processor with L1 cache memory (instruction and data) –

2x64Kbytes, L2 cache memory with 256Kbytes size and L3

cache memory with 512Kbytes size. The remaining

parameters are configured like in the benchmarks before.

At L1 there are 88% hits and 12% misses. Out of all the L1

misses, 8.7% are misses at L2, the next level of cache

memory, and 5.3% of them also miss at L3, the last level of

cache memory. Table 1 presents the calculated values of

average access time.

The access time for the first level of cache memory is 1.5ns,

but because of the cache misses, according to the calculations

and experimental results we gathered, in the case of only one

level of cache memory the average access time is 13.02ns.

With the implementation of a second level of cache memory,

the average access time decreased for 24%, and the

implementation of another level of cache memory decreased

the average access time for another 17%. In another words,

the three-level cache memory decreased the average access

time for 37%, which of course has a significant impact on

processor performance.

TABLE I
CALCULATED AVERAGE ACCESS TIME

Cache memory Average memory access time (ns)

L1 13.02

L1+L2 9.89

L1+L2+L3 8.15

In future modern processor architectures, the memory

hierarchy will be an important technique for hiding of the

basic memory latency. The next expected step is to increase

the number of cache memory levels implemented in the core

itself. Of course, we also need to mention the consequences

that appear as a result from adding an extra cache memory

level, especially at multi-core processors that mostly have

shared cache memory.

C. How the Number of Cores Affects Cache Misses

In this part of the benchmarks the simulator was configured

as architecture with a symmetrical multi-core processor. The

architecture has only one level of cache memory (L1) with a

size of 512Kbytes split in two parts: an instruction part with a

size of 256Kbytes and a data part with a size of 256Kbytes.

The whole cache memory is two-way set associative, and the

block replacement is done on the least used block. The bus

supports MESI protocol for maintaining memory coherence.

The size of the main memory is 1Gbytes.

During the testing the number of cores in the processor

changes: 2, 4, 8, 16, 32, 64; and MDLJD is used as a

benchmark. The results are shown on Fig. 3:

Fig. 3. How the number of processor cores affects cache misses

Fig. 3 presents the percentage of overall cache misses, in

which it can be noted that in the beginning, together with the

increase of the number of processor cores, the number of

cache misses decreases. But when the number of cores

surpasses 16, the number of cache misses starts increasing

again. That shows that the replication of cores does not lead to

a multiple enhancement in the performance, if proper

techniques for efficient usage of MLP are not implemented.

0

20

40

60

80

100

2 X 4 2 X 8 2 X 16 2 X 32 2 X 64 2 X 128 2 X 256

Load

Save

8.000%

9.000%

10.000%

11.000%

2 4 8 16 32 64
cores in processor cache misses

275

V. DIRECTIONS FOR IMPROVEMENT OF MODERN

PROCESSOR ARCHITECTURE PERFORMANCE

Besides the many papers that discuss techniques for

improving the MLP efficiency, until now they have had low

participation in commercial architectures. The reasons for that

are the limitations each of them has, either concerning their

implementation in the processor or because they would not

give the expected results with a real load. For example, the

runahead technique in [3] enables a virtual enlargement of the

instruction window and pre-fetching of data in the cache

memory that the processor will need in the future. But in the

case of an isolated cache miss, after which there are no other

misses, this technique damages the processor performance, i.e.

the time the processor needs to enter runahead mode is

wasted.

Memory hierarchy will be the basic technique for

decreasing memory latency in future processor architectures

as well. The last Intel i7 multi-core processor from the third

generation shows that in the future, designers will pledge for

implementation of more levels of cache memory in the

processor core itself. But as our results have shown, that also

causes cache misses which increase the average memory

access time, therefore damaging processor performance. This

means that MLP will face researchers and designers with the

challenge to invent a technique that will decrease the number

of cache misses by enabling parallel memory access. This is

even more important if we also consider the fact that in future

architectures the number of replicated cores and implemented

threads in them will increase. Therefore, a bigger number of

threads will have parallel execution in the processor, but the

number of parallel memory accesses will also increase.

Besides the fact that many authors have experimentally

determined that store operations are less present than load

operations, we should not ignore the results that have shown

us that the percentage of cache misses at store is very high

(can add up to 80%). Especially when we know that there are

programs in which store instructions (e.g. data acquisition)

predominate.

The analysis in this paper show us that the number of cache

misses depends on processor architecture, levels of cache

memory, size of cache memory, purpose of the processor, but

also the original code of the executed programs. The other

authors’ techniques that we presented here have their

advantages and weak points. In order to efficiently use MLP

in future architectures, aware hybrid techniques need to be

designed – they would be able to parallelize fetching and

bringing data to the first level of cache memory right before

the processor core needs them, under different circumstances.

In the future, memory latency will keep on increasing

because of the gap between processor and memory speed. The

instruction window enlarges with the number of replicated

cores, the number of parallel memory accesses increases, the

cache memory levels grow bigger. All of that is a reason for

increased number of cache misses that ultimately has an effect

on processor performance. The search for solution should

target MLP and its exploitation.

VI. CONCLUSION

Memory Level Parallelism is a modestly researched area,

although it has a great impact on processor performance. Most

of the works mentioned in this paper still have not found

application in commercial processors. More significantly, the

future processor development will move in a direction of

parallel execution of as many processes as possible. The

number of cores and threads will continue growing, and cache

memory has a tendency of increasing the number of levels.

These changes will enhance the flow of data and memory

accesses. The designers of new processor architectures need to

offer techniques that will succeed at prefetching data to the

cache memory, as close to the processor as possible, to be

used in near future.

The increase in frequency has reached its maximum, the

increase of cores and threads has limits, the ILP loses its

power and in some newer architectures it is decreased or

avoided. MLP efficiency represents a challenge for the

enhancement of processor performance and needs to get more

attention.

REFERENCES

[1] J. L. Hennessy, D. A. Patterson, Computer Architecture: A

quantitiative approach, 4th edition, 2007.

[2] M. Prisaganec, “Performance Evaluation of the Schemes for

Dynamic Branch Prediction”, Master Thesis, Faculty of

Technical Sciences, Bitola, 2011.

[3] E. Sprangle, D. Carmean, “Increasing processor performance by

implementing deeper pipelines”, Proceedings of 29th Annual

International Symposium on Computer Architecture, pp. 25-34,

2002.

[4] O. Mutlu, J. Stark, C. Wilkerson, Y. N. Patt, “Runahead

execution: An alternative to very large instruction windows for

out-of-order processors”, HPCA '03 Proceedings of the 9th

International Symposium on High-Performance Computer

Architecture, pp. 129-140, 2003.

[5] M. Gušev, P. Mitrevski, “Modeling and Performance Evaluation

of Branch and Value Prediction in ILP Processors”,

International Journal of Computer Mathematics, Vol. 80, No. 1,

pp. 19-46, 2003.

[6] K. Van Craeynest, S. Eyerman, L. Eeckhout, “MLP-aware

Runahead Threads in a Simultaneous Multithreading

Processor”, Proc. of the 4th HiPEAC Int. Conf, Paphos, Cyprus,

pp. 110-124, 2009.

[7] Cristal, D. Ortega, J. Llosa, M. Valero, “Out Of Order Commit

Processors”, Proceedings of the 10th International Symposium

on High Performance Computer Architecture, pp. 48-59, 2004.

[8] M. K. Qureshi, D. N. Lynch, O. Mutlu, Y. N. Patt, “A Case for

MLP-Aware Cache Replacement”, Proceedings of the 33rd

Annual International Symposium on Computer Architecture, pp.

167-178, 2006.

[9] S. T. Srinivasen, R. Rajwar, H. Akkary, A. Gandhi, M. Upton,

“Continual Flow Pipeline”, Proc. of the 11th international

conference on Architectural support for programming languages

and operating systems, pp. 107-119, 2004.

[10] P. Mitrevski, M. Gušev, “On the Performance Potential of

Speculative Execution Based on Branch and Value Prediction”,

International Scientific Journal Facta Universitatis, Series:

Electronics and Energetics, Vol. 16, No. 1, pp. 83-91, 2003.

276

