

Machine Learning Based Classification of Multitenant
Configurations in the Cloud

Monika Simjanoska1, Goran Velkoski2, Sasko Ristov3 and Marjan Gusev4

Abstract – Cloud computing is a new archetype where the
hardware resources offered as services are intended to be
excessively scalable. The cloud model’s ability of sharing
hardware resources and services among multiple tenants sets
new challenges and issues. In this paper we consider the
performance as an issue of the multi-tenant cloud model, since
multiple tenants share same hardware resources, applications
and database instances. In order to measure the performance, we
performed response time analysis of a memory demanding web
service, hosted in two distinct experimental multitenant cloud
environments. Furthermore, we used the performance data to
build robust machine learning based classifier, capable of
distinguishing between two multi-tenant configurations. The
significance of this approach is in its ability to learn and adapt to
various workloads and to prevent the initiation of new virtual
machine instances when not necessary.

Keywords – Cloud Computing, Machine Learning,
Performance

I. INTRODUCTION

Cloud computing refers to both the applications delivered
as services over the Internet and the hardware and systems
software in the data-centers that provide those services [1].
Cloud’s resource sharing feature describes the ability of
sharing the hardware resources and the services among
multiple tenants and makes this new computing paradigm
different from the traditional service computing. Bezemer at
al. [2] give an overview to some of the key features of multi-
tenancy as hardware resource sharing, high degree of
reconfigurability, shared application and database instances,
and list a number of benefits for companies to achieve higher
utilization of hardware resources, easier and cheaper
maintenance, lower overall costs, etc.

Virtualization enables isolation of the tenants in multitenant
cloud computing environment. However, the tenants are not
quite isolated since they share the same cloud resources, such
as CPU cache, network interfaces, main memory etc.
Therefore, the multitenancy confronts some inevitable issues.
Disrupted and non-consistent performance is one of the

consequences which results from the sharing of the same
infrastructure between multiple users.

In this paper we analyse the performance of a memory
demanding web service hosted in different multitenant
configurations. We realize a series of experiments with
various server loads by changing the message size and the
number of concurrent messages to analyse the response time
in each of the multitenant environments. Our idea is to find
out whether spreading the resources among several smaller
virtual machine instances in a different manner, produces two
different multitenant configurations in terms of the
performance. In this research we propose machine learning
modelling of the two multitenant environments performance,
in order to build a classifier capable of discrimination between
the two classes. The contribution of an approach like this is in
its ability to learn and adapt to new server loads, ignoring the
accidental peaks and thus avoiding the unnecessary initiation
of new virtual machine instances.

The rest of the paper is organized as follows. In Section 2
we briefly present the latest work related to our problem. The
methodology for the machine learning approach is presented
in Section 3. In Section 4 we present the experiments and the
results, and we derive our conclusions in Section 5.

II. RELATED WORK

In this section we present some of the latest work related to
machine learning analysis in cloud computing. Even though
machine learning techniques can be implemented for solving
many cloud computing issues, considering the cloud
computing literature, its application is still not widespread.
Mostly, the machine learning is used for job scheduling,
workload management, energy saving, etc.

Ganapathi et al. [3] present statistical driven modeling and
its application to data intensive workloads. The authors used
statistics to predict resource requirements for cloud computing
applications, which can be used for making decisions
including job scheduling, resource allocation, and workload
management. Bodik et al. [4] proposed a machine learning
approach to predict system performance for future
configurations and workloads and find a control policy that
minimizes resource usage while maintaining performance.
Cloud environments benefit from intelligent virtualized
resources. Xiong et al. [5] proposed an intelligent virtualized
resources management solution in their machine learning
powered SmartSLA. Cloud computing is often hosted on
energy consuming data centers. Therefore, energy
consumption optimization is another cloud computing and
data center issue. Chen et al. [6] adopted machine learning
methods for data center workload, thermal distribution and
cooling facilities management. The performance prediction

1Monika Simjanoska with the University Sts Cyril and Methodius,
Faculty of Computer Sciences and Engineering, Skopje, Rugjer
Boshkovikj 16, 1000 Skopje, Macedonia

2Goran Velkoski is with the University Sts Cyril and Methodius,
Faculty of Computer Sciences and Engineering, Skopje, Rugjer
Boshkovikj 16, 1000 Skopje, Macedonia

3Sasko Ristov is with the University Sts Cyril and Methodius,
Faculty of Computer Sciences and Engineering, Skopje, Rugjer
Boshkovikj 16, 1000 Skopje, Macedonia

4Marjan Gusev is with the University Sts Cyril and Methodius,
Faculty of Computer Sciences and Engineering, Skopje, Rugjer
Boshkovikj 16, 1000 Skopje, Macedonia

277

has always been researchers challenge. Li et al. [7] present a
CloudProphet that can accurately predict the response time of
an on-premise web application that migrates to a cloud.
CloudGuide explores which cloud configurations meet
performance requirements and cost constraints and also can
find new configuration when workload changes [8].

III. THE METHODOLOGY

In this section we present the methodology for the machine
learning approach, the preprocessing and the classification
process itself.

A. The Testing Environment

As a testing environment we used client-server architecture
deployed in OpenStack [9] open source cloud platform with
Kernel-based Virtual Machine (KVM) hypervisor. The client
and server nodes are installed with Linux Ubuntu Server
11.04 operating system on a machine using Intel(R) Xeon(R)
CPU X5647 @ 2.93GHz with 4 CPU cores and 8GB RAM
installed. The server platform in cloud realized by virtual
machine instances consists of Linux Ubuntu Server 11.04
operating system and Apache Tomcat 6 as application server.
The client and the cloud are placed in the same LAN segment
to minimize network latency [10]. The client uses SoapUI
[11] to test web services performance varying the server
loads. While testing, two experimental multitenant
configurations, that host a memory demanding web service,
are taken into account:

1. Multitenant cloud environment with 2 VM
instances, each with 2 CPU cores (2x2), and

2. Multitenant cloud environment with 4 VM
instances, each with 1 CPU core (4x1).

B. Server Load Simulation

Generation of various server loads was performed using
SoapUI tool. Each VM instance is loaded with N messages
with parameter size of M kilobytes each, with variance 0.5.
The range of parameters M and N is selected such that web
servers in VM instances work in normal mode without
replying error messages and avoiding saturation. The web
service is loaded with N = 12, 100, 500, 752, 1000, 1252,
1500, 1752 and 2000 requests per second for each message
parameter size M from 0K to 9K. In order to simulate
different connections per core we divide the N concurrent
messages in four groups of N = 4 messages each. In order to
achieve realistic performance results, we measured various
parameters as minimum and maximum response time, the
average response time, transactions per second (tps), bytes
and bytes per second (bps).

C. Data Preprocessing

According to the multitenant configurations, we separated
the data from the testing into two distinct classes, as specified
in Section 3.2. The results for each class are organized as
follows. For each value of the message size M and number of
concurrent messages N, SoapUI generates approximately 200
tests. We organized the data as vectors containing the
minimum response time, maximum response time, average
response time, tps, bytes and bps. Considering the cardinality
of the Cartesian product of the sets M and N is 81 and the
number of tests is nearly 200, there are approximately 16,000
vectors for one thread for a single class. However, there are a
total of four threads and nearly 64,000 vectors in each of the
classes. In order to organize all data into the total of four
threads, we calculated the median of the tests that belong to
the particular thread, instead of their mean, in order to
eliminate the possibility of unreal average driven by any
unexpected peaks.

In order to prepare the data for the classification process,
we transformed the values calculating their z-scores using (1).

 (1)

The z-score, or, the standardized score, is a measure of how
many standard deviations the observation is above or below
the mean. This normalization is useful when there are outliers
that would dominate if we map the values so that they fall
within a small specified range, such as 0.0 to 1.0, i.e., if we
normalize the values using the min-max normalization [12].

D. Classification

In this paper we assume that classifying the two classes

measurements, is a fitting problem. Therefore, we aim to find
a model which fits the observations. Since for every input we
know the desired output, we can use supervised learning
technique as neural networks, to map between the
observations and the set of numeric targets. In this paper we
used a two-layer feed-forward network with sigmoid hidden
neurons and linear output neurons as depicted in Fig. 1. Given
consistent data and enough neurons in its hidden layer, this
method can fit multi-dimensional mapping problems. For our
problem we used 20 hidden layer neurons. As a training
method we used the Levenberg-Marquardt backpropagation
algorithm. The results from the classification are given in
Section 4.

Fig. 1 Two-layer feed-forward neural network [13]

278

IV. EXPERIMENTS AND RESULTS

In this section we present the experiments from the
classification and the obtained results.

Organizing the measurements into four threads produced 4
x 81, or, 324 vectors in each class, containing the minimum
response time, the maximum response time, the average
response time, tps, bytes and bps. However, after few
classification experiments, we concluded that the classifier
works better if we eliminate the minimum response time as
parameter and all further analysis are done without the
minimum response time metric.

As we normalized the observations calculating their z-
scores, we used the MatLab’s neural fitting tool [13] to
perform classification analysis as specified in Section 3.4. In
our classification we used 70%, or, 454 samples to belong to
the training set, 15%, or, 98 samples to the validation set, and
also 15% to the testing set. All samples were randomly chosen
to belong to each of the sets. Hereupon, we used a neural
network with 20 hidden layer neurons and trained it using the
Levenberg-Marquardt backpropagation algorithm. The

training process finished in 33 iterations when the validation
error increased for 6 iterations. The performance of the
classifier is measured according to the Mean Squared Error
(MSE) algorithm. MSE is the average squared difference
between outputs and targets. Fig. 2 depicts the training,
validation and the testing errors. Since the best validation
performance value is ~0.068, we consider it is low enough to
conclude the result is reasonable. Further indicators of
promising results are the similarity between the testing and the
validation error, and also the insignificant overfitting that
occurs after the epoch 27 where the best validation
performance occurs.

The state of the training algorithm with respect to epochs is
depicted in Fig. 3.

A linear regression between the network outputs and the
corresponding targets is depicted in Fig. 4. Regression R
values measure the correlation between outputs and targets.
An R value of 1 means a close relationship, whereas 0 means
a random relationship. According to the R values, the output
corresponds to the targets good enough for the training, the
validation and the testing. The total network response is
~0.904 which satisfies our expectations. All the results are
presented in Table I.

TABLE I
CLASSIFICATION RESULTS

Results Samples MSE R
Training 454 ~0.043 0.91
Validation 98 ~0.067 0.86
Testing 98 ~0.049 0.89

V. CONCLUSION AND FUTURE WORK

In this paper we perform series of experiments to simulate
different multitenant cloud environments. Our aim is to
measure the performance impact when sharing the same
infrastructure resources among multiple tenants and to
perform classification analysis of discrimination between the
two types of multitenant configurations. For that purpose we
inspect the performance behavior when a memory demanding
web service is hosted in multitenant cloud environment with 2
VM instances, each with 2 CPU cores, and a multitenant
cloud environment with 4 VM instances, each with 1 CPU
core. While evaluating the performance we take into account
the minimum response time, the maximum response time, the
average response time, tps, bytes and bps, for various numbers
of messages different in size. Once we obtained the results we
normalized the values and used a two-layer feed-forward
network with sigmoid hidden neurons and linear output
neurons to perform classification analysis. Considering the
high level of similarity between the two classes, the
classification results showed satisfying overall response of
~0.904 value of correlation between the outputs and the
targets.

We believe that the contribution of the machine learning
approach for our problem is in its ability to learn and adapt to
new server loads, ignoring any accidental peaks. Moreover,

Fig. 2. Classification performance results

Fig. 3. Training algorithm state

279

this research aims towards real time decision of new virtual
machine instances initiation.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Commun. ACM, vol.
53, no. 4, pp. 50–58, Apr. 2010.

[2] C.P. Bezemer and A. Zaidman, “Multi-tenant saas applications:
maintenance dream or nightmare?” in Proceedings of the Joint
ERCIM Workshop on Software Evolution (EVOL) and
International Workshop on Principles of Software Evolution
(IWPSE), ser. IWPSE-EVOL ’10.

[3] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson,
“Statistics-driven workload modeling for the cloud," in Data
Engineering Workshops (ICDEW), IEEE 26th Int. Conference
on, 2010, pp. 87-92.

[4] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan and D.
Patterson, “Statistical machine learning makes automatic control
practical for internet datacenters,” in Proceedings of the 2009
Conference on Hot topics in cloud computing, 2009, pp. 12-12.

[5] P. Xiong, Y. Chi, S. Zhu, H. J. Moon, C. Pu and H. Hacigumus,
“Intelligent management of virtualized resources for database
systems in cloud environment,” in Data Engineering (ICDE),
IEEE 27th International Conference on, 2011, pp. 87-98.

[6] H. Chen, P. Kumar, M. Kesavan, K. Schwan, A. Gavrilovska,
and Y. Joshi, “Spatially-aware optimization of energy

consumption in consolidated datacenter systems,” Proceedings
of InterPACK, Portland, OR, 2011.

[7] A. Li, X. Zong, S. Kandula, X. Yang, and M. Zhang,
“Cloudprophet: towards application performance prediction in
cloud,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 4, pp.
426–427, Aug. 2011.

[8] S. H. Liew and Y.-Y. Su, “Cloudguide: Helping users estimate
cloud deployment cost and performance for legacy web
applications,” in Cloud Computing Technology and Science
(CloudCom), 2012 IEEE 4th International Conference on, dec.
2012, pp. 90 –98.

[9] OpenStack, “Openstack cloud software,” Jan. 2013. [Online].
Available: http://openstack.org

[10] M. Juric, I. Rozman, B. Brumen, M. Colnaric and M. Hericko,
“Comparison of performance of web services, WS-Security,
RMI, and RMI-SSL,” J. of Systems and Software, vol. 79, no. 5,
pp. 689-700, 2006.

[11] SoapUI, “Functional testing tool for web service testing,” Jan.
2013. [Online]. Available: http://www.soapui.org/

[12] J. Han and M. Kamber, “Data Mining: Concepts and
Techniques,” Second edition, Elsevier, 2006.

[13] MATLAB, 2013. Available: http://www.mathworks.com

Fig. 4. Regression Analysis

280

