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Abstract – Cloud computing is a new archetype where the 
hardware resources offered as services are intended to be 
excessively scalable. The cloud model’s ability of sharing 
hardware resources and services among multiple tenants sets 
new challenges and issues. In this paper we consider the 
performance as an issue of the multi-tenant cloud model, since 
multiple tenants share same hardware resources, applications 
and database instances. In order to measure the performance, we 
performed response time analysis of a memory demanding web 
service, hosted in two distinct experimental multitenant cloud 
environments. Furthermore, we used the performance data to 
build robust machine learning based classifier, capable of 
distinguishing between two multi-tenant configurations. The 
significance of this approach is in its ability to learn and adapt to 
various workloads and to prevent the initiation of new virtual 
machine instances when not necessary. 
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I. INTRODUCTION 

Cloud computing refers to both the applications delivered 
as services over the Internet and the hardware and systems 
software in the data-centers that provide those services [1]. 
Cloud’s resource sharing feature describes the ability of 
sharing the hardware resources and the services among 
multiple tenants and makes this new computing paradigm 
different from the traditional service computing. Bezemer at 
al. [2] give an overview to some of the key features of multi-
tenancy as hardware resource sharing, high degree of 
reconfigurability, shared application and database instances, 
and list a number of benefits for companies to achieve higher 
utilization of hardware resources, easier and cheaper 
maintenance, lower overall costs, etc. 

Virtualization enables isolation of the tenants in multitenant 
cloud computing environment. However, the tenants are not 
quite isolated since they share the same cloud resources, such 
as CPU cache, network interfaces, main memory etc. 
Therefore, the multitenancy confronts some inevitable issues. 
Disrupted and non-consistent performance is one of the 

consequences which results from the sharing of the same 
infrastructure between multiple users. 

In this paper we analyse the performance of a memory 
demanding web service hosted in different multitenant 
configurations. We realize a series of experiments with 
various server loads by changing the message size and the 
number of concurrent messages to analyse the response time 
in each of the multitenant environments. Our idea is to find 
out whether spreading the resources among several smaller 
virtual machine instances in a different manner, produces two 
different multitenant configurations in terms of the 
performance. In this research we propose machine learning 
modelling of the two multitenant environments performance, 
in order to build a classifier capable of discrimination between 
the two classes. The contribution of an approach like this is in 
its ability to learn and adapt to new server loads, ignoring the 
accidental peaks and thus avoiding the unnecessary initiation 
of new virtual machine instances. 

The rest of the paper is organized as follows. In Section 2 
we briefly present the latest work related to our problem. The 
methodology for the machine learning approach is presented 
in Section 3. In Section 4 we present the experiments and the 
results, and we derive our conclusions in Section 5.  

II. RELATED WORK 

In this section we present some of the latest work related to 
machine learning analysis in cloud computing. Even though 
machine learning techniques can be implemented for solving 
many cloud computing issues, considering the cloud 
computing literature, its application is still not widespread. 
Mostly, the machine learning is used for job scheduling, 
workload management, energy saving, etc. 

Ganapathi et al. [3] present statistical driven modeling and 
its application to data intensive workloads. The authors used 
statistics to predict resource requirements for cloud computing 
applications, which can be used for making decisions 
including job scheduling, resource allocation, and workload 
management. Bodik et al. [4] proposed a machine learning 
approach to predict system performance for future 
configurations and workloads and find a control policy that 
minimizes resource usage while maintaining performance. 
Cloud environments benefit from intelligent virtualized 
resources. Xiong et al. [5] proposed an intelligent virtualized 
resources management solution in their machine learning 
powered SmartSLA. Cloud computing is often hosted on 
energy consuming data centers. Therefore, energy 
consumption optimization is another cloud computing and 
data center issue. Chen et al. [6] adopted machine learning 
methods for data center workload, thermal distribution and 
cooling facilities management. The performance prediction 
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has always been researchers challenge. Li et al. [7] present a 
CloudProphet that can accurately predict the response time of 
an on-premise web application that migrates to a cloud. 
CloudGuide explores which cloud configurations meet 
performance requirements and cost constraints and also can 
find new configuration when workload changes [8]. 

 

III. THE METHODOLOGY 

In this section we present the methodology for the machine 
learning approach, the preprocessing and the classification 
process itself. 

 
A. The Testing Environment 

As a testing environment we used client-server architecture 
deployed in OpenStack [9] open source cloud platform with 
Kernel-based Virtual Machine (KVM) hypervisor. The client 
and server nodes are installed with Linux Ubuntu Server 
11.04 operating system on a machine using Intel(R) Xeon(R) 
CPU X5647 @ 2.93GHz with 4 CPU cores and 8GB RAM 
installed. The server platform in cloud realized by virtual 
machine instances consists of Linux Ubuntu Server 11.04 
operating system and Apache Tomcat 6 as application server. 
The client and the cloud are placed in the same LAN segment 
to minimize network latency [10]. The client uses SoapUI 
[11] to test web services performance varying the server 
loads. While testing, two experimental multitenant 
configurations, that host a memory demanding web service, 
are taken into account: 

1. Multitenant cloud environment with 2 VM 
instances, each with 2 CPU cores (2x2), and 

2. Multitenant cloud environment with 4 VM 
instances, each with 1 CPU core (4x1). 

 
B. Server Load Simulation 
 

Generation of various server loads was performed using 
SoapUI tool. Each VM instance is loaded with N messages 
with parameter size of M kilobytes each, with variance 0.5. 
The range of parameters M and N is selected such that web 
servers in VM instances work in normal mode without 
replying error messages and avoiding saturation. The web 
service is loaded with N = 12, 100, 500, 752, 1000, 1252, 
1500, 1752 and 2000 requests per second for each message 
parameter size M from 0K to 9K. In order to simulate 
different connections per core we divide the N concurrent 
messages in four groups of N = 4 messages each. In order to 
achieve realistic performance results, we measured various 
parameters as minimum and maximum response time, the 
average response time, transactions per second (tps), bytes 
and bytes per second (bps). 
 
C. Data Preprocessing 
 

According to the multitenant configurations, we separated 
the data from the testing into two distinct classes, as specified 
in Section 3.2. The results for each class are organized as 
follows. For each value of the message size M and number of 
concurrent messages N, SoapUI generates approximately 200 
tests. We organized the data as vectors containing the 
minimum response time, maximum response time, average 
response time, tps, bytes and bps. Considering the cardinality 
of the Cartesian product of the sets M and N is 81 and the 
number of tests is nearly 200, there are approximately 16,000 
vectors for one thread for a single class. However, there are a 
total of four threads and nearly 64,000 vectors in each of the 
classes. In order to organize all data into the total of four 
threads, we calculated the median of the tests that belong to 
the particular thread, instead of their mean, in order to 
eliminate the possibility of unreal average driven by any 
unexpected peaks. 

In order to prepare the data for the classification process, 
we transformed the values calculating their z-scores using (1). 

 

   (1) 
 

The z-score, or, the standardized score, is a measure of how 
many standard deviations the observation is above or below 
the mean. This normalization is useful when there are outliers 
that would dominate if we map the values so that they fall 
within a small specified range, such as 0.0 to 1.0, i.e., if we 
normalize the values using the min-max normalization [12]. 

 
D. Classification 

 
In this paper we assume that classifying the two classes 

measurements, is a fitting problem. Therefore, we aim to find 
a model which fits the observations. Since for every input we 
know the desired output, we can use supervised learning 
technique as neural networks, to map between the 
observations and the set of numeric targets. In this paper we 
used a two-layer feed-forward network with sigmoid hidden 
neurons and linear output neurons as depicted in Fig. 1. Given 
consistent data and enough neurons in its hidden layer, this 
method can fit multi-dimensional mapping problems. For our 
problem we used 20 hidden layer neurons. As a training 
method we used the Levenberg-Marquardt backpropagation 
algorithm. The results from the classification are given in 
Section 4. 

 

 
 

Fig. 1 Two-layer feed-forward neural network [13] 
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IV. EXPERIMENTS AND RESULTS 

In this section we present the experiments from the 
classification and the obtained results. 

Organizing the measurements into four threads produced 4 
x 81, or, 324 vectors in each class, containing the minimum 
response time, the maximum response time, the average 
response time, tps, bytes and bps. However, after few 
classification experiments, we concluded that the classifier 
works better if we eliminate the minimum response time as 
parameter and all further analysis are done without the 
minimum response time metric. 

As we normalized the observations calculating their z-
scores, we used the MatLab’s neural fitting tool [13] to 
perform classification analysis as specified in Section 3.4. In 
our classification we used 70%, or, 454 samples to belong to 
the training set, 15%, or, 98 samples to the validation set, and 
also 15% to the testing set. All samples were randomly chosen 
to belong to each of the sets. Hereupon, we used a neural 
network with 20 hidden layer neurons and trained it using the 
Levenberg-Marquardt backpropagation algorithm. The 

training process finished in 33 iterations when the validation 
error increased for 6 iterations. The performance of the 
classifier is measured according to the Mean Squared Error 
(MSE) algorithm. MSE is the average squared difference 
between outputs and targets. Fig. 2 depicts the training, 
validation and the testing errors. Since the best validation 
performance value is ~0.068, we consider it is low enough to 
conclude the result is reasonable. Further indicators of 
promising results are the similarity between the testing and the 
validation error, and also the insignificant overfitting that 
occurs after the epoch 27 where the best validation 
performance occurs. 

The state of the training algorithm with respect to epochs is 
depicted in Fig. 3. 

A linear regression between the network outputs and the 
corresponding targets is depicted in Fig. 4. Regression R 
values measure the correlation between outputs and targets. 
An R value of 1 means a close relationship, whereas 0 means 
a random relationship. According to the R values, the output 
corresponds to the targets good enough for the training, the 
validation and the testing. The total network response is 
~0.904 which satisfies our expectations. All the results are 
presented in Table I. 

TABLE I 
CLASSIFICATION RESULTS 

Results Samples MSE R 
Training 454 ~0.043 0.91
Validation 98 ~0.067 0.86
Testing 98 ~0.049 0.89

 

V. CONCLUSION AND FUTURE WORK 

In this paper we perform series of experiments to simulate 
different multitenant cloud environments. Our aim is to 
measure the performance impact when sharing the same 
infrastructure resources among multiple tenants and to 
perform classification analysis of discrimination between the 
two types of multitenant configurations. For that purpose we 
inspect the performance behavior when a memory demanding 
web service is hosted in multitenant cloud environment with 2 
VM instances, each with 2 CPU cores, and a multitenant 
cloud environment with 4 VM instances, each with 1 CPU 
core. While evaluating the performance we take into account 
the minimum response time, the maximum response time, the 
average response time, tps, bytes and bps, for various numbers 
of messages different in size. Once we obtained the results we 
normalized the values and used a two-layer feed-forward 
network with sigmoid hidden neurons and linear output 
neurons to perform classification analysis. Considering the 
high level of similarity between the two classes, the 
classification results showed satisfying overall response of 
~0.904 value of correlation between the outputs and the 
targets. 

We believe that the contribution of the machine learning 
approach for our problem is in its ability to learn and adapt to 
new server loads, ignoring any accidental peaks. Moreover, 

 

Fig. 2. Classification performance results 

 

Fig. 3. Training algorithm state 

279



 
 

this research aims towards real time decision of new virtual 
machine instances initiation. 
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Fig. 4. Regression Analysis 
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