

Concurrent X-fault simulator – problems and decision
Pavlinka Radoyska

1
 and Kamen Fillyov

2

Abstract – In this paper is presented concurrent X-fault

simulator. The main problems originate from the multiple fault

nature of X-fault model and specific propagation rules. The first

problem stems from inability to use bivalent logic for bad gates.

This problem is resolved by trivalent logic and two bits

presentation for any value. The next problems arise from specific

fault propagation rules. Second problem is connected with X-

fault version generation. This problem is resolved by associating

a set of sub-bad gates to every bad gate. The third problem

relates to the X-fault source lines presentation. The aim is to

make fast unions operations. This problem is resolved very

effectively by using binary arrays for source lines description.

Keywords – X-fault model, VLSI fault simulator, concurrent

fault simulation, algorithm, bivalent logic, trivalent logic, bitwise

operations.

I. INTRODUCTION

X-fault model is described in [1], [2] and [3]. This is a

multiple fault model. It is proper for modeling some complex

defects such as Byzantine defect, bridge defect and others.

Each X-fault is described by the gate name, the version and

the set of source lines. X-fault is injected on each gate output

(fig.1). X-fault versions are different for each output branch.

The set of source lines includes one element - the branch line.

X-fault has the single fault nature, if the gate has one output

line, and multiple fault nature, if the gate has fanout on the

output. Fault propagation rules are described by the equations

from (1) to (12).

Fig. 1: X-fault injection for fanout-free and fanout gates

NOT(Xi(b)) =)(biX (1)

AND(Xi(b),0) = 0 (2)

AND(Xi(b),1) = Xi(b) (3)

AND(Xi(b),)(biX) = 0 (4)

OR(Xi(b1),0) = Xi(b1) (5)

OR(Xi(b1),1) = 1 (6)

OR(Xi(b),)(biX) = 1 (7)

XOR(Xi(b),0)= Xi(b) (8)

XOR(Xi(b),1) =)(biX (9)

XOR (Xi(b),)(biX)=1 (10)

XOR (Xi(b), Xi(b))=0 (11)

G(X1(B1), X1(B2),, Xk(Bk)) =)(
1

1 
k

i

k BiX



 (12)

Many authors works on developing effective simulation

algorithms [5][6][7], based on stuck-at fault model. The most

efficient of them is concurrent fault simulator. Concurrent

simulation algorithm is based on fast bivalent logic and event-

driven principles. Fault-free simulations are performed on

circuit model. Each fault-free gate is called good gate. A set of

bad gates is associated with each good gate. Bad gates

correspond to the faults, observable on the input lines and

simulate the faulty behavior. One bad gate corresponds to one

fault. A gate is called bad if at least one line (input or output)

has different value from the corresponding line in the good

gate. A bed event is generated on the gate output if the output

signal level for the bad gate is different from the output signal

level for the good gate. Bad gates, which generate bad events

on primary outputs, determine the set of faults, detected by

applied input vector. The full calculations for the good gates

and for the set of bad gates are performed for first simulation

cycle. Only gates (good or bed) with input lines, affected by

an event are recalculated on the next simulation cycles. Event

is called every change of line signal value.

X-fault propagation principles, have analytic nature and

there are deductive approach is the closest to this description.

Deductive X-fault simulator is presented in previous papers.

Another type of X-fault simulator - parallel X-fault simulator,

is developed by Tallinn University of Technology, Estonia

[8]. Our aims are to develop X-fault simulator of concurrent

type. Developing the concurrent X-fault simulator is

supported by some problems. The first problem comes from

more complex propagation rules and impossibility to use

simple bivalent logic. The second problem comes from the

multiple fault nature and necessity to define unique fault

version identifier. The third problem comes from requirement

to make union between the source lines sets. We try to

resolve these problems in the next section.

II. PROBLEMS AND DECISIONS

As described above, a set of bad gates must be associated to

each good gate (fig.2). Every bad gate corresponds to one X-

1Pavlinka Radoyska is with the College of Energetic and

Electronics at Technical University of Sofia, 8 Kl. Ohridski Blvd,

Sofia 1000, Bulgaria, E-mail: pradoiska@abv.bg.
2Kamen Fillyov is with the Faculty of Computer Systems and

Control at Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia

1000, Bulgaria, E-mail: kfillyov@ecad.tu-sofia.bg.

291

fault. The good gate is G. On its input lines are detectable

three X-faults: A, B and C. Associated bad gates are three: G-

A for X-fault A, G-B for X-fault B and G-C for X-fault C.

A. Bivalent logic

Effectiveness and fastness of the classic concurrent

simulator is comes especially from bivalent logic and fast

bitwise operations. If we replace signals for every faulty lines

in bad gates (fig.2) with opposite value for gate G-A will get

AND(0,0,1)=0, for gate G-B will get AND(1,1,1)=1 and for

gate G-C – AND(1,1,0)=0. Output signal level for G-A is 0,

which means that this bad gate does not generate bad event.

This behavior corresponds to the X-fault propagation rules.

Output signal level for G-B is 1, which means that this bad

gate generates bad event. This behavior corresponds to the X-

fault propagation rules too. Output signal level for G-C is 0,

which means that this bad gate does not generate bad event.

This behavior is in conflict with the X-fault propagation rules.

Therefore bivalent logic is not applicable for the X-fault

model.

Problem can be solved by using trivalent logic in

combination with bitwise operations. Signal values are 3

types: 0 and 1 for fault-free inputs and X, for faulty signal

level. Bad gate generates bad event if output signal level is X.

Bad gates behavior in trivalent logic are described as follows:

for G-A – AND(X,0,1)=0; for G-B – AND(1,X,1)=X; for G-C

– AND(1,X,X)=X. Hence, bad gate G-A does not generate

bad event and bad gates G-B and G-C generate bad events.

Trivalent values can be presented by two bits to use the fast

bitwise operations. Value “0” is presented by (00), value “1” –

by (11) and value “X” – by the rest two combinations: (01)

and (10). Trivalent logic and bitwise operations for bad gates

of AND, OR, NAND and NOR types are presented by

equations (13)-(24). Output X values for normal gates are

presented by (01). Output X values for inverted gates are

presented by (10). This is the reason to use two binary

presentations for X value.

AND ((00), (01)) = (00)  AND (0, X) = 0 (13)

AND ((11), (01)) = (01)  AND (1, X) = X (14)

AND ((01), (01)) = (01)  AND (X, X) = X (15)

OR ((00), (01)) = (01)  OR (0, X) = X (16)

OR ((11), (01)) = (11)  OR (1, X) = 1 (17)

OR ((01), (01)) = (01)  OR (X, X) = X (18)

NAND ((00), (01)) = (11)  NAND (0, X) = 1 (19)

NAND ((11), (01)) = (10)  NAND (1, X) = X (20)

NAND ((01), (01)) = (10)  NAND (X, X) = X (21)

NOR ((00), (01)) = (10)  NOR (0, X) = X (22)

NOR ((11), (01)) = (00)  NOR (1, X) = 0 (23)

NOR ((01), (01)) = (10)  NOR (X, X) = X (24)

The main purpose of trivalent logic is to determine whether

there is a bad event on the bad gate output or not. This logic is

not applicable for XOR/NXOR gates. XOR(X,X) must be X,

but XOR((01),(01))=(00). The problem will be discussed in

the next sub-section.

Fig.2. Gate description for X-fault concurrent simulator

B. X-fault version identifier generation

Calculations for the new X-fault version identifier (vID) are

more complex and time consuming. There are 3 sub-

problems:

a) How to generate unique version ID for every new

combination of input X-fault versions;

b) How to generate the same version ID for the same

combination of input X-fault versions;

c) How to determine if there is a dominant X-fault version

and decide to use it as output X-fault version.

The first approach for new vID generation is to use integer

value and to care highest version ID (hvID). The value of

dvID is increase by one for any new version. This approach is

very fast, but does not satisfy sub-problems b) and c). A

circuit segment is shown on fig.3. Fault version 3 is the same

as fault version 5, but it is not visible by vID. This approach

does not permit to associate the same vID for X3(l1,l2) and

X5(l1,l2). Therefore we give up first approach.

Fig.3. X-fault version generation

The second approach is to use string values for vID and

generate it by concatenation the source versions. In this

manner the vID for faults X3 and X5 will become identical:

vID=”12”. But if the new version generates only by source

versions concatenation, the vID for X4 will look like the same

as the faults X3 and X5: vID=”12”. This is the reason to add

symbol “i" before every X-fault version ID, which has

inversion flag. The vID for X4 will become “1i2”, which is

different.

292

Concatenation approach follows to two other problems:

versions order problem and duplication problem. Versions

“12” and “21” are represent by different strings, but actually

they are the same. The set of input vID must be sorted before

concatenation to avoid version order problem. The vID for X7

(firg.3) is “12”, according to the X-fault propagation rules, but

after concatenation vID becomes “1212”. Problem can be

solved by reducing the duplicate versions after sorting and

before concatenation. The duplicate versions are neighbors in

ordered set and reducing process is not time consuming.

It is more complex operation to find dominant X-fault

versions, received by equations (4), (7), (10) and (11). There

are analytical and bivalent approaches for solving the

problem. Analytical approach is close connected to describe

above solution for solving duplicate version name problem.

Inverse flags are compared for every pair of identical

versions. If flags are the same, the second version name is

extracted from the set. If flags are different, there is a

dominant version.

Fig.4. Sub-bad gates for AND-type gate

The second approach has concurrent fault simulation

nature. If a bad gate generate bad event, for each X-fault

version is created a new sub-bad gate. Signal level for each

fault free input line is the same as in good gate. Signal level

for each faulty input line with the same fault version is X(01).

Signal levels for other input lines are recessive for the gate

type – 1 for AND and NAND gates and 0 for OR and NOR

gates. Duplicate versions are affected the same sub-bad gate

with X value on the gate output. The version is dominant if

output signal level for the sub-bad gate is opposite of the good

gate. The output version is dominant if there is a dominant

version among the sub-bad gates. Otherwise output version is

obtained by applying the concatenation between sub-bad gates

versions. Sub-bad gates must be ascending sorted by version

ID. A gate with input vector (111) is shown on fig.4. Fault-

free output signal is 1. Two X-faults are cause effect on the

gate – A and C. Two bad gates are associated with a good

gate. The two bad gates generate bed events.

X-fault A has two versions – “1” and “2”. Two sub-bad

gates (G-A1 and G-A2) are generated for this bad gate.

Version “1” cause effect on lines a and c. Input signal level

for line a is (01) and for line c – (10), because there is an

inversion. Input signal for line b is (11). Output signal for sub-

bad gate G-A1 is (00) and therefore this is a dominant fault

version.

X-fault C has also two versions – “1” and “2”. Two sub-bad

gates (G-C1 and G-C2) are generated for this bad gate.

Version “1” cause effect on line and its input signal is (01).

Input signals for lines b and c are (11). Output signal for sub-

bad gate G-C1 is (01) and therefore this is a normal fault

version, which will be included in concatenation for new vID.

Version “2” cause effect on lines b and c and their input

signals are (01). Input signal for line a is (11). Output signal

for sub-bad gate G-C2 is (01) and therefore this is a normal

fault version, which will be included in concatenation for new

vID.

Fig.5. Sub-bad gates for AND-type gate

In this way, the duplication and dominant problems are

solved in a natural way with very fast bitwise operations.

Moreover, this approach gives solution for the XOR problem,

discussed in section A. Only sub-bad gates are generated for

XOR and NXOR gates. Duplicate input X-fault versions

follow to value (00) on the gate output, independently of input

signal levels. Mutually inverse X-fault versions follow to

value (11) on the gate output, independently of input signal

levels. Dominant X-fault version is determined only after

comparison with the output signal for good gate. Input vector

for the gate on fig. 5 is (11). Input X-faults are A, B and C. X-

fault A cause the two input lines with the same vID, but with

inversion on line c. Therefore one sub-bad gate G-A1 is

created for fault A. Output line level for G-A1 is (11), which

is opposite then the good gate. Therefore there is a bad event

and dominant fault version. X-fault C cause the two input

lines with the same vID. Therefore one sub-bad gate G-C1 is

created for fault C. Output line level for G-C1 is (00), which

is the same as for the good gate. Therefore there is not a bad

event. X-fault B cause the two input lines with different vIDs.

Therefore two sub-bad gates (G-B1 and G-B2) are created for

fault B. Output line level for the two sub-bad gates is (01),

which means that the two versions generate bad events and

vID on the gate output is “12”. If The input vector for fig.5 is

(01), output signal for good gate will be 1, output signals for

sub-bad gates G-A1 and G-C1 will be the same. Therefore G-

C1 will become dominant version and G-A1 will not generate

bad event. Output signals for G-B1 and G-B2 will be (01),

which is again X-value.

In conclusion, the best solution for X-fault version ID value

type is string type. The best solution for version ID generation

is to generate sorted list of sub-bed gates for each version and

concatenate version IDs, if there are not dominant version.

293

C. Union operations for set of X-faults base lines

There are two solutions for description the source lines for

current X-fault version. Description by string values, which

are the lines names, is used in the first solutions. An array of

source lines’ names is associated with every X-fault version.

The union of source lines makes by multiple scanning the

base arrays, which will slow down the simulator.

Description by binary values is used in the second

solutions. Source lines for any X-fault version are described

by a binary array. The size of array is the number of fanout

branches on the output of the gate, for which X-fault is

injected. The bit, corresponding to the faulty source branch

number has true value, others have false value. Each binary

array has only one true value on fault injection stage. The

union of two base lines’ sets comes down to bitwise AND.

For example let us see the gate on fig. 1.b). Gate has three

output branches. Therefore the source lines array for this X-

fault has three elements. Injected faults are X”1”(100) for line

c1, X”2”(010) for line c2 and X”3”(001) for line c3. Source

lines union for equation (25) is presented by binary arrays in

equation (26). Source lines union for equation (27) is

presented by binary arrays in equation (28). Source lines

union for equation (29) is presented by binary arrays in

equation (30).

AND (X”1”(c1), X”2”(c2)) = X”12”(c1, c2) (25)

AND (X”1”(100), X”2”(010)) = X”12”((100) & (010)) =

= X”12”(110) (26)

AND (X”1”(c1), X”3”(c3)) = X”13”(c1, c3) (27)

AND (X”1”(100), X”3”(001)) = X”13”((100) & (001)) =

= X”13”(101) (28)

AND (X”12”(c1,c2),X”13”(c1,c3)) = X”1213”(c1,c2,c3) (29)

AND (X”12”(110), X”13”(101)) = X”1213”((110) & (011)) =

= X”1213”(111) (30)

The second approach is time and memory consuming and

we have embedded it in the concurrent X-fault simulator.

III. EXPERIMENTAL RESULTS

Concurrent X-fault simulator is developed on C# and .NET

framework as web-based tool. The deductive X-fault

simulator has been presented in previous papers. Simulations

are performed with the two simulators on the same benchmark

circuits and test sets. Measured simulation time for the

deductive simulator (DS) and for the Concurrent simulator

(CS) are presented in table 1. Abbreviation CS/DS indicates

the simulation time ratio of Concurrent simulator to Deductive

simulator. The results show that the Concurrent simulator is

more effective than the Deductive simulator.

Experiments are made on computer with 3 GB RAM,

Pentium Dual-Core CPU T440 2.20GH and 32-bit operating

system. The results are indicative, despite the weak

performance of the machine, because the relative, not absolute

results are important.

TABLE I

SIMULATION TIMES FOR DEDUCTIVE AND CONCURRENT SIMULATORS

Circuit DS (sec.) CS (sec.) CS/DS

C17 0.0109 0.0099 0.91

74L85 0.0183 0.0162 0.88

74181 0.0192 0.0163 0.85

74182 0.0047 0.0038 0.80

74283 0.0090 0.0066 0.73

C432 0.1186 0.0903 0.76

C499 0.1140 0.0964 0.85

C880 0.2616 0.2129 0.81

C1908 1.2350 0.9594 0.78

C1355 4.6758 4.3871 0.94

C3540 6.5588 5.1301 0.78

IV. CONCLUSIONS

The main goal of this paper is to discuss the problems,

related to development of concurrent simulator for X-fault

model and to offer the best solutions for them. Proposed

concurrent simulator uses trivalent logic for bad gates

simulations. Each value is presented by two bits and

performances are implemented by fast bitwise operations. A

bad gate generate bad event if output signal level is X. Sub-

bad gates, working in trivalent logic, are used for any X-fault

version. X-fault source lines are described by binary values

and lines’ sets union is performed as bitwise AND.

REFERENCES

[1] Huisman, L.(2004). Diagnosing Arbitrary Defects in Logic

Designs Using Single Location at A Time (SLAT), IEEE

Transactions on Computer-Aided Design of Inte¬grated Circuits

and Systems, vol. 23, no. 1, 2004, pp. 91–101

[2] Wen, X., Miyoshi, T., Kajiihara, S., Wang, L., Saluja, K.,

Kinoshita, K. (2004). On per-test fault diagnosis using the X-

fault model. In Int’l Conf. on CAD, 2004, pp. 633–640.

[3] Polian, I., Miyase, K., Nakamura, Y. , Kajihara, S., Engelke, P.,

Becker, B., Spinner, S., Wen, X. (2008). Diagnosis of Realistic

Defects Based on the X-Fault Model, 11th IEEE Workshop on

Design and Diagnostics of Electronic Circuits and Systems,

DDECS 2008., pp.1-4

[4] Zhang, Y., Guan, Y., Wang G.(2009). Analysis and Comparison

of Fault Simulation, International Symposium on Intelligent

Ubiquitous Computing and Education, 2009, pp. 503 – 506

[5] Shen, Li, (2003). RTL Concurrent Fault Simulation,

Proceedings of the 12th Asian Test Symposium

[6] Lu, W., M. Radetzki (2011). Efficient Fault Simulation of

SystemC Designs, 14th Euromicro Conference on Digital

System Design, IEEE, Computer Society , pp. 487-494

[7] Bosio, A., G. Natale (2008). LIFTING: a Flexible Open-Source

Fault Simulator, 17th Asian Test Symposium, pp. 36 – 40

[8] Ubar, R., Devadze, S., Raik, J., Jutman, A. (2010). Parallel X-

fault simulation with critical path tracing technique, Proceedings

of the Conference on Design, Automation and Test in Europe

DATE '10, pp. 879-884

294

