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Abstract – In this paper is presented concurrent X-fault 

simulator. The main problems originate from the multiple fault 

nature of X-fault model and specific propagation rules. The first 

problem stems from inability to use bivalent logic for bad gates. 

This problem is resolved by trivalent logic and two bits 

presentation for any value. The next problems arise from specific 

fault propagation rules. Second problem is connected with X-

fault version generation. This problem is resolved by associating 

a set of sub-bad gates to every bad gate. The third problem 

relates to the X-fault source lines presentation. The aim is to 

make fast unions operations. This problem is resolved very 

effectively by using binary arrays for source lines description.  
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I. INTRODUCTION 

X-fault model is described in [1], [2] and [3]. This is a 

multiple fault model. It is proper for modeling some complex 

defects such as Byzantine defect, bridge defect and others. 

Each X-fault is described by the gate name, the version and 

the set of source lines. X-fault is injected on each gate output 

(fig.1). X-fault versions are different for each output branch. 

The set of source lines includes one element - the branch line.  

X-fault has the single fault nature, if the gate has one output 

line, and multiple fault nature, if the gate has fanout on the 

output. Fault propagation rules are described by the equations 

from (1) to (12). 

 

 

Fig. 1: X-fault injection for fanout-free and fanout gates 
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Many authors works on developing effective simulation 

algorithms [5][6][7], based on stuck-at fault model. The most 

efficient of them is concurrent fault simulator. Concurrent 

simulation algorithm is based on fast bivalent logic and event-

driven principles. Fault-free simulations are performed on 

circuit model. Each fault-free gate is called good gate. A set of 

bad gates is associated with each good gate. Bad gates 

correspond to the faults, observable on the input lines and 

simulate the faulty behavior. One bad gate corresponds to one 

fault. A gate is called bad if at least one line (input or output) 

has different value from the corresponding line in the good 

gate. A bed event is generated on the gate output if the output 

signal level for the bad gate is different from the output signal 

level for the good gate. Bad gates, which generate bad events 

on primary outputs, determine the set of faults, detected by 

applied input vector.  The full calculations for the good gates 

and for the set of bad gates are performed for first simulation 

cycle. Only gates (good or bed) with input lines, affected by 

an event are recalculated on the next simulation cycles.  Event 

is called every change of line signal value. 

X-fault propagation principles, have analytic nature and 

there are deductive approach is the closest to this description. 

Deductive X-fault simulator is presented in previous papers. 

Another type of X-fault simulator - parallel X-fault simulator, 

is developed by Tallinn University of Technology, Estonia 

[8]. Our aims are to develop X-fault simulator of concurrent 

type.  Developing the concurrent X-fault simulator is 

supported by some problems. The first problem comes from 

more complex propagation rules and impossibility to use 

simple bivalent logic. The second problem comes from the 

multiple fault nature and necessity to define unique fault 

version identifier. The third problem comes from requirement 

to make union between the source lines sets.  We try to 

resolve these problems in the next section. 

II. PROBLEMS AND DECISIONS  

As described above, a set of bad gates must be associated to 

each good gate (fig.2). Every bad gate corresponds to one X-
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fault. The good gate is G. On its input lines are detectable 

three X-faults: A, B and C. Associated bad gates are three: G-

A for X-fault A, G-B for X-fault B and G-C for X-fault C.  

A. Bivalent logic 

Effectiveness and fastness of the classic concurrent 

simulator is comes especially from bivalent logic and fast 

bitwise operations. If we replace signals for every faulty lines 

in bad gates (fig.2) with opposite value for gate G-A will get 

AND(0,0,1)=0, for gate G-B will get AND(1,1,1)=1 and for 

gate G-C – AND(1,1,0)=0. Output signal level for G-A is 0, 

which means that this bad gate does not generate bad event. 

This behavior corresponds to the X-fault propagation rules. 

Output signal level for G-B is 1, which means that this bad 

gate generates bad event. This behavior corresponds to the X-

fault propagation rules too. Output signal level for G-C is 0, 

which means that this bad gate does not generate bad event. 

This behavior is in conflict with the X-fault propagation rules. 

Therefore bivalent logic is not applicable for the X-fault 

model.  

Problem can be solved by using trivalent logic in 

combination with bitwise operations. Signal values are 3 

types: 0 and 1 for fault-free inputs and X, for faulty signal 

level. Bad gate generates bad event if output signal level is X. 

Bad gates behavior in trivalent logic are described as follows: 

for G-A – AND(X,0,1)=0; for G-B – AND(1,X,1)=X; for G-C 

– AND(1,X,X)=X. Hence, bad gate G-A does not generate 

bad event and bad gates G-B and G-C generate bad events.  

Trivalent values can be presented by two bits to use the fast 

bitwise operations. Value “0” is presented by (00), value “1” – 

by (11) and value “X” – by the rest two combinations: (01) 

and (10). Trivalent logic and bitwise operations for bad gates 

of AND, OR, NAND and NOR types are presented by 

equations (13)-(24). Output X values for normal gates are 

presented by (01). Output X values for inverted gates are 

presented by (10). This is the reason to use two binary 

presentations for X value.  

AND ( (00), (01)) = (00)  AND ( 0, X) = 0  (13) 

AND ( (11), (01)) = (01)  AND ( 1, X) = X  (14) 

AND ( (01), (01)) = (01)  AND ( X, X) = X (15) 

OR ( (00), (01)) = (01)  OR ( 0, X) = X   (16) 

OR ( (11), (01)) = (11)  OR ( 1, X) = 1  (17) 

OR ( (01), (01)) = (01)  OR ( X, X) = X  (18) 

NAND ( (00), (01)) = (11)  NAND (0, X) = 1 (19) 

NAND ( (11), (01)) = (10)  NAND ( 1, X) = X (20) 

NAND ( (01), (01)) = (10)  NAND ( X, X) = X (21) 

NOR ( (00), (01)) = (10)  NOR ( 0, X) = X  (22) 

NOR ( (11), (01)) = (00)  NOR ( 1, X) = 0  (23) 

NOR ( (01), (01)) = (10)  NOR ( X, X) = X  (24) 

The main purpose of trivalent logic is to determine whether 

there is a bad event on the bad gate output or not. This logic is 

not applicable for XOR/NXOR gates. XOR(X,X) must be X, 

but XOR((01),(01))=(00). The problem will be discussed in 

the next sub-section. 

 

Fig.2. Gate description for X-fault concurrent simulator 

B. X-fault version identifier generation  

Calculations for the new X-fault version identifier (vID) are 

more complex and time consuming. There are 3 sub-

problems: 

a) How to generate unique version ID for every new 

combination of input X-fault versions; 

b) How to generate the same version ID for the same 

combination of input X-fault versions; 

c) How to determine if there is a dominant X-fault version 

and decide to use it as output X-fault version.  

The first approach for new vID generation is to use integer 

value and to care highest version ID (hvID). The value of 

dvID is increase by one for any new version. This approach is 

very fast, but does not satisfy sub-problems b) and c). A 

circuit segment is shown on fig.3. Fault version 3 is the same 

as fault version 5, but it is not visible by vID. This approach 

does not permit to associate the same vID for X3(l1,l2) and 

X5(l1,l2). Therefore we give up first approach.  

 
Fig.3. X-fault version generation 

The second approach is to use string values for vID and 

generate it by concatenation the source versions. In this 

manner the vID for faults X3 and X5 will become identical: 

vID=”12”. But if the new version generates only by source 

versions concatenation, the vID for X4 will look like the same 

as the faults X3 and X5: vID=”12”. This is the reason to add 

symbol “i" before every X-fault version ID, which has 

inversion flag. The vID for X4 will become “1i2”, which is 

different. 
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Concatenation approach follows to two other problems: 

versions order problem and duplication problem. Versions 

“12” and “21” are represent by different strings, but actually 

they are the same. The set of input vID must be sorted before 

concatenation to avoid version order problem. The vID for X7 

(firg.3) is “12”, according to the X-fault propagation rules, but 

after concatenation vID becomes “1212”. Problem can be 

solved by reducing the duplicate versions after sorting and 

before concatenation. The duplicate versions are neighbors in 

ordered set and reducing process is not time consuming.  

It is more complex operation to find dominant X-fault 

versions, received by equations (4), (7), (10) and (11). There 

are analytical and bivalent approaches for solving the 

problem. Analytical approach is close connected to describe 

above solution for solving duplicate version name problem. 

Inverse flags are compared for every pair of identical 

versions. If flags are the same, the second version name is 

extracted from the set. If flags are different, there is a 

dominant version.  

 
Fig.4. Sub-bad gates for AND-type gate 

The second approach has concurrent fault simulation 

nature. If a bad gate generate bad event, for each X-fault 

version is created a new sub-bad gate. Signal level for each 

fault free input line is the same as in good gate. Signal level 

for each faulty input line with the same fault version is X(01). 

Signal levels for other input lines are recessive for the gate 

type – 1 for AND and NAND gates and 0 for OR and NOR 

gates. Duplicate versions are affected the same sub-bad gate 

with X value on the gate output. The version is dominant if 

output signal level for the sub-bad gate is opposite of the good 

gate. The output version is dominant if there is a dominant 

version among the sub-bad gates. Otherwise output version is 

obtained by applying the concatenation between sub-bad gates 

versions. Sub-bad gates must be ascending sorted by version 

ID. A gate with input vector (111) is shown on fig.4. Fault-

free output signal is 1. Two X-faults are cause effect on the 

gate – A and C. Two bad gates are associated with a good 

gate. The two bad gates generate bed events. 

X-fault A has two versions – “1” and “2”. Two sub-bad 

gates (G-A1 and G-A2) are generated for this bad gate. 

Version “1” cause effect on lines a and c. Input signal level 

for line a is  (01) and for line c – (10), because there is an 

inversion. Input signal for line b is (11). Output signal for sub-

bad gate G-A1 is (00) and therefore this is a dominant fault 

version.  

X-fault C has also two versions – “1” and “2”. Two sub-bad 

gates (G-C1 and G-C2) are generated for this bad gate. 

Version “1” cause effect on line and its input signal is (01). 

Input signals for lines b and c are (11). Output signal for sub-

bad gate G-C1 is (01) and therefore this is a normal fault 

version, which will be included in concatenation for new vID. 

Version “2” cause effect on lines b and c and their input 

signals are (01). Input signal for line a is (11). Output signal 

for sub-bad gate G-C2 is (01) and therefore this is a normal 

fault version, which will be included in concatenation for new 

vID.  

 
Fig.5. Sub-bad gates for AND-type gate 

In this way, the duplication and dominant problems are 

solved in a natural way with very fast bitwise operations. 

Moreover, this approach gives solution for the XOR problem, 

discussed in section A. Only sub-bad gates are generated for 

XOR and NXOR gates. Duplicate input X-fault versions 

follow to value (00) on the gate output, independently of input 

signal levels. Mutually inverse X-fault versions follow to 

value (11) on the gate output, independently of input signal 

levels. Dominant X-fault version is determined only after 

comparison with the output signal for good gate. Input vector 

for the gate on fig. 5 is (11). Input X-faults are A, B and C. X-

fault A cause the two input lines with the same vID, but with 

inversion on line c. Therefore one sub-bad gate G-A1 is 

created for fault A. Output line level for G-A1 is (11), which 

is opposite then the good gate. Therefore there is a bad event 

and dominant fault version. X-fault C cause the two input 

lines with the same vID. Therefore one sub-bad gate G-C1 is 

created for fault C. Output line level for G-C1 is (00), which 

is the same as for the good gate. Therefore there is not a bad 

event. X-fault B cause the two input lines with different vIDs. 

Therefore two sub-bad gates (G-B1 and G-B2) are created for 

fault B. Output line level for the two sub-bad gates is (01), 

which means that the two versions generate bad events and 

vID on the gate output is “12”. If The input vector for fig.5 is 

(01), output signal for good gate will be 1, output signals for 

sub-bad gates G-A1 and G-C1 will be the same. Therefore G-

C1 will become dominant version and G-A1 will not generate 

bad event. Output signals for G-B1 and G-B2 will be (01), 

which is again X-value. 

In conclusion, the best solution for X-fault version ID value 

type is string type. The best solution for version ID generation 

is to generate sorted list of sub-bed gates for each version and 

concatenate version IDs, if there are not dominant version. 
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C. Union operations for set of X-faults base lines  

There are two solutions for description the source lines for 

current X-fault version. Description by string values, which 

are the lines names, is used in the first solutions. An array of 

source lines’ names is associated with every X-fault version. 

The union of source lines makes by multiple scanning the 

base arrays, which will slow down the simulator. 

Description by binary values is used in the second 

solutions. Source lines for any X-fault version are described 

by a binary array. The size of array is the number of fanout 

branches on the output of the gate, for which X-fault is 

injected. The bit, corresponding to the faulty source branch 

number has true value, others have false value. Each binary 

array has only one true value on fault injection stage. The 

union of two base lines’ sets comes down to bitwise AND. 

For example let us see the gate on fig. 1.b). Gate has three 

output branches. Therefore the source lines array for this X-

fault has three elements. Injected faults are X”1”(100) for line 

c1, X”2”(010) for line c2 and X”3”(001) for line c3. Source 

lines union for equation (25) is presented by binary arrays in 

equation (26). Source lines union for equation (27) is 

presented by binary arrays in equation (28). Source lines 

union for equation (29) is presented by binary arrays in 

equation (30). 

AND (X”1”(c1), X”2”(c2)) = X”12”(c1, c2)    (25) 

AND (X”1”(100), X”2”(010)) = X”12”((100) & (010)) = 

= X”12”(110)      (26) 

AND (X”1”(c1), X”3”(c3)) = X”13”(c1, c3)    (27) 

AND (X”1”(100), X”3”(001)) = X”13”((100) & (001)) = 

= X”13”(101)      (28) 

AND (X”12”(c1,c2),X”13”(c1,c3)) = X”1213”(c1,c2,c3)  (29) 

AND (X”12”(110), X”13”(101)) = X”1213”((110) & (011)) =  

= X”1213”(111)      (30) 

The second approach is time and memory consuming and 

we have embedded it in the concurrent X-fault simulator.  

III. EXPERIMENTAL RESULTS 

Concurrent X-fault simulator is developed on C# and .NET 

framework as web-based tool. The deductive X-fault 

simulator has been presented in previous papers. Simulations 

are performed with the two simulators on the same benchmark 

circuits and test sets. Measured simulation time for the 

deductive simulator (DS) and for the Concurrent simulator 

(CS) are presented in table 1. Abbreviation CS/DS indicates 

the simulation time ratio of Concurrent simulator to Deductive 

simulator. The results show that the Concurrent simulator is 

more effective than the Deductive simulator. 

Experiments are made on computer with 3 GB RAM, 

Pentium Dual-Core CPU T440 2.20GH and 32-bit operating 

system. The results are indicative, despite the weak 

performance of the machine, because the relative, not absolute 

results are important. 

TABLE I 

SIMULATION TIMES  FOR DEDUCTIVE AND CONCURRENT SIMULATORS  

Circuit DS (sec.) CS (sec.) CS/DS 

C17 0.0109 0.0099 0.91 

74L85 0.0183 0.0162 0.88 

74181 0.0192 0.0163 0.85 

74182 0.0047 0.0038 0.80 

74283 0.0090 0.0066 0.73 

C432 0.1186 0.0903 0.76 

C499 0.1140 0.0964 0.85 

C880 0.2616 0.2129 0.81 

C1908 1.2350 0.9594 0.78 

C1355 4.6758 4.3871 0.94 

C3540 6.5588 5.1301 0.78 

IV. CONCLUSIONS 

The main goal of this paper is to discuss the problems, 

related to development of concurrent simulator for X-fault 

model and to offer the best solutions for them.  Proposed 

concurrent simulator uses trivalent logic for bad gates 

simulations. Each value is presented by two bits and 

performances are implemented by fast bitwise operations. A 

bad gate generate bad event if output signal level is X. Sub-

bad gates, working in trivalent logic, are used for any X-fault 

version. X-fault source lines are described by binary values 

and lines’ sets union is performed as bitwise AND. 
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