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Abstract – This paper proposes a trajectory tracking controller 
for a dragline excavator. First, a dynamic model of the excavator 
suitable for feedback control is developed. A desired trajectory 
for the slew motion is generated using fifth order polynomial 
function. After linearization of the nonlinear dynamic model, a 
linear feedback control is proposed.  Simulation results illustrate 
the effectiveness of the proposed controller. 
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I. INTRODUCTION 

Dragline excavators are heavy machines, widely used in the 
mining industry to remove overburden in open-pit coal 
mining. 

The interest in automatic control of draglines has been 
increasing in recent years. This is because the advantages that 
the automatic control offers over a manual control include 
greater efficiency, operator’s convenience and possibility of 
periodic break for repose. While the problem of automatic 
control of cranes has attracted a great deal of attention during 
the last decade [1,2], to our knowledge, the problem of 
controlling dragline excavators has seldom been addressed in 
the literature [3,4,5]. The goal is to transport the payload for a 
given period of time and, in the same time, to reduce the 
bucket swing angle. The Lagrange formalism is often used for 
derivation of different types of mechanical devices [6,7,8,9]. 

In this paper, we propose a simplified control strategy 
based on linearization of the dynamic model combined with 
trajectory tracking and linear feedback control law. The 
organization of the paper is as follows: In Section II, a 
dynamic model of the dragline excavator suitable for feedback 
control applications is derived.  In Section III, a linear control 
law is designed. Section IV contains simulation results. 
Conclusions are presented in Section V.  

II. DYNAMIC MODEL 

A schematic view of the dragline excavator is shown in Fig. 
1. In order to derive a dynamic model suitable for control 
applications, we make the following assumptions: the bucket 
and the payload are considered as a point mass, the mass and 
stiffness of the drag and hoist ropes are neglected. In this case, 

the system has two degree of freedom and the associate 
generalized coordinates are 

 
                                   [ ] 2

21 ℜ∈= Tq θθ                            (1) 
 

where 1θ  is the slew angle, which represents the rotation of 
the house and the boom structures about the vertical z0 axis; 

2θ  is the swing angle of the bucket, which represents the 
angle between the vertical plane passing through the boom 
axis and the plane passing through the boom axis and the 
bucket (Fig. 1). 
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Fig. 1. Schematic view of a dragline excavator 
 

In the present paper, 4x4 matrices of homogenous 
transformation are used. An inertial coordinate system 
O0x0y0z0 is assigned in the work space where the z0 axis is in 
the vertical direction.  The z1 axis of the rotating together with 
the house structure O1x1y1z1 coordinate system coincides with 
the z0 axis and the slew angle 1θ  is measured between x0 and  
x1 axes. The z2 axis is directed along the boom axis and the 
origin of the coordinate system O2x2y2z2 is put at the point of 
the reduction of the mass of the boom A. This point is 
received from the intersection of the boom axis and the 
perpendicular from the bucket to the boom axis. The origin of 
coordinate system O3x3y3z3 coincides with the origin of the 
coordinate system O2x2y2z2 and axis z2 coincides with axis  z3. 

The swing angle 2θ  is measured between x2 and x3 axes. The 
parameters LX and LZ are the distances from the point O0 to the 
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point O2. The corresponding homogeneous transformation 
matrices which define the relative position and orientation 
between the adjacent coordinate systems are: 
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If we suppose that swing angle 2θ  is small than  
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Using the transformation matrices (2), the coordinates of 

the points A and B with respect to O0x0y0z0 are  
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                                ( ) XA Ly 1sin θ=  
                                ZA Lz =                                                (3)                 

( ) ( ) ( ) ( )( )LLx XB 1211 sinsincoscos θθαθθ −+=  
( ) ( ) ( ) ( )( )LLy XB 1211 cossinsinsin θθαθθ ++=  

                            ( )αcosLLz ZB −= . 
                         
The dynamic equations of motion of the dragline are 

derived using Lagrange formalism 
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where the Lagrangian La represents the difference between the 
kinetic and potential energy of the system; Φ is the Rayleigh 
dissipation function; Qi are the generalized forces associated 
with the generalized coordinates 

 The kinetic energy of the system comprises three 
components – the kinetic energies of the masses mA and mB 
and the kinetic energy of the rotating house. The full kinetic 
energy of the system is obtained as follows: 
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where α is the angle between the boom and the horizontal 
plane; L is the length of line between points A and B; mA is the 
reduced to the point A mass of the boom;  mB is the mass of 
the dragline bucket and payload; J is the mass moment of 
inertia of the rotated house. 

The potential energy of the system is given as  
( ) ( )( )2coscos θαLLgmU ZB −= .                          (6) 

 

In the present paper, we consider that the dissipation of the 
energy is present only in the rotating mechanism, supporting 
rotating house and is due to the resistive forces, which are 
proportional to the velocity. The Rayleigh dissipation function 
is defined by the following equation 

 
2

112
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where b1 is viscous damping coefficient, associated with 
coordinate 1θ . 

Using equations (3), (4), (5), (6) and (7), the dynamic 
equations of motion of the dragline are obtained in the form 

 
        QGqCqD =++ &&&                                   (8) 

 
    After linearization, the matrices in (8) take the form: 
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( )αsinLLK X +=  
  where M is the control moment, acting on the rotating house. 

Remark 1: It should be noted that the matrix D is positive 
definite and the matrix CD −&2/1  is skew-symmetric. 

III. FEEDBACK CONTROL DESIGN    

In this paper, we consider the problem of position control   
of the dragline excavator. The goal is to transport the bucket 
by slew motion of the boom and to reduce the swing angle of 
the bucket. The desired trajectory for the slew motion of the 
boom is proposed in the form of a fifth order polynomial: 
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where the coefficients a0…a5 are determined by the initial and 
end conditions.  

We make the following change of coordinate 
  

                                 de 111
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and input 

                                 du 1θτ &&−=                                     (12) 
 
where 
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Finally, using (11)-(13), after some work, the dynamic 

equations of the dragline excavator can be written in error 
coordinate as  
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We assume that [ ] 4
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The system (14) is controllable, since 
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The system (14) is transformed in control canonical form 

by using the transformations 
 
                                           Texc =                                  (16) 
where 
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and  
                          1−= TTAA ec , ec Tbb = . 
 
Then, the system is stabilized by linear feedback of the 

form 
                                          ckxu −=                                 (17) 
 

by using the pole placement method, where k = [k1,k2, k3, k4] 
and  the gains ki  (i = 1,2,3,4) are positive numbers. 

IV. SIMULATION RESULTS 

Several simulations using MATLAB were carried out in 
order to illustrate the performance of the proposed controller. 
The desired trajectory of the boom slew motion is given by 
(10) and coefficients for the desired angle π/2 rad and final 
time of 22s are a0=a1=a2=0, a3=1.475.10-3, a4=-1.006.10-4, 
a5=1.829.10-6. The dragline excavator is tested with a reduced 
mass of the boom mA=150.103 kg, mass of the bucket and 
payload  mB=50.103 kg,  distances LX=40 m and L=15 m, 
mass moment of inertia of the rotating house J=37.106 kg.m2, 
damping coefficients b1=150.103 N.m.s, b2=2.103 N.m.s. In 
the first simulation, from Fig. 2, we can see the evolution in 
time of the swing angle θ2 during the rotation of the boom. 
Fig. 3, presents the evolution in time of the movement of the 
boom θ1(t) according to desired trajectory θ1

d(t). Fig. 4 
presents the tracking error

1θe . The results of the simulations 
confirm the validity of the proposed controller.  

 
Fig. 2. Time history of the swing angle of the bucket 

 

 
Fig. 3. Time history of the boom displacement (red line), desired 

trajectory (blue line) 

 
Fig.4. Tracking error  
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V. CONCLUSION 

In this paper, a trajectory tracking controller for a 2-DOF 
dragline excavator has been proposed. A dynamic model of 
the dragline was developed by using the Lagrange formalism.. 
A desired trajectory for the boom rotation was generated using 
a fifth order polynomial. Linear feedback was proposed for 
the linearized control system. Simulation results confirm the 
validity of the proposed controller. 
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