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Abstract – This paper presents efficient neural model for 
estimation of the microwave antenna noise temperature which 
can accelerate the prediction procedure of the external noise 
level at the receiving point of a wireless communication systems. 
Were taken into account only the effects of natural noise sources, 
which are surrounded by the antenna system and considerably 
more stable than artificial. The case of microwave wireless 
transmission, where dominated influence of noise generated by 
emissions of gases from the atmosphere (primarily oxygen and 
water vapour), is considered. Accordingly, we developed a neural 
network model for antenna noise temperature prediction of the 
RF receiver based on Multilayer Perceptron (MLP) network. 
The architecture of this model, the results of its training and 
testing and simulation results are presented in this paper in the 
appropriate sections. 
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I. INTRODUCTION 

The outburst of wireless systems presents a growing 
number of technical challenges for performance demand, 
necessary to support vast number of wireless applications. The 
wireless system design goal is to achieve the largest possible 
coverage area in which the received power is sufficiently 
strong compared to background noise. Consequently, one of 
fundamental parameters in wireless communication is signal-
to-noise power ratio that indicates the reliability of the link 
between the transmitter and receiver. Therefore, it certainly 
helps to have a reliable tool to estimate noise power during the 
process of wireless systems designing.  

Now, the most frequently used recommendation is ITU-R 
P.372-10 for estimation of extern noise of RF transmitters [1]. 
Recommendation ITU-R P.372 provides data on radio noise 
external to the radio receiving system which derives from the 
following causes: radiation from lightning discharges 
(atmospheric noise due to lightning); aggregated unintended 
radiation from electrical machinery, electrical and electronic 
equipments, power transmission lines, or from internal 
combustion engine ignition (man-made noise); emissions 
from atmospheric gases and hydrometeors; the ground or 
other obstructions within the antenna beam;  radiation from 
celestial radio sources. Many noise dependences [1,2] are 
represented by formula whose parameters should be 
determined from a lot of complex figures. Classical use of 

Recommendation ITU-R P.372 requires figures visual reading 
with applying challenging interpolation methods resulting in 
time-consuming, forceful process with non-satisfactory 
accuracy. 

The application of Artificial Neural Network (ANN) is 
proven as a good tool for overcoming all of the specified 
problems. ANN is very sophisticated modeling techniques 
capable of modeling extremely complex functions. Indeed, 
anywhere that there are problems of prediction, classification 
or control, neural networks can be introduced. ANN has the 
capability of a functional dependence’s modeling exclusively 
on the basis of input data [3-6]. Neural network architecture 
which is consisted of connected small processing units 
(neurons). In this way, neural network can be used for 
modeling high-distributed and high-parallel problems [3-6]. 
The second is neural network ability to learn function 
dependence on the basis of solved examples rather then to 
learn to execute some well known function dependence. After 
successful learning process of neural network, it can be used 
not only for known examples but also for unknown examples 
(generalization). 

Neural network has been applied for estimation level of RF 
receiver external noise taking only frequency as a factor, not 
taking into account the parameters that describe the antenna 
environment [5]. In this paper, neural model for prediction of 
the microwave antenna noise temperature is developed 
resulting in more effective estimation of receiver external 
noise dependence on water vapor concentration in 
atmosphere, frequency and antenna elevation in microwave 
range. This model is established by further developing of the 
model that is presented in the reference [7]. Model in 
reference [7] in calculation of brightness temperature takes 
only frequency and antenna elevation. 

II. SPECIFICATION OF NOISE INTENSITY OF 
WIRELESS COMMUNICATION SYSTEM 

The noise factor, f, for a receiving system is composed of a 
number of noise sources at the receiving terminal of the 
system [1,2]. Both internal and external noise must be 
considered. For receivers of the wireless communication 
system, the system noise factor is given by [1]:  
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where lc is antenna circuit loss, lt is transmission line loss and 
fr is noise factor of ideal antenna and ft is the noise factor 
associated with the transmission line losses. fa is the external 
noise factor defined as: 
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where pn is available noise power from an equivalent lossless 
antenna, k is Boltzmann’s constant = 1.38 × 10–23 J/K, t0 is 
reference temperature taken as 290 K and b[Hz] is noise 
power bandwidth of the receiving system [1,2]. 

External noise factor can be presented using effective 
temperature of antenna noise ta: 
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where Pa is external noise power collected by antenna. 
The available noise power is obtained by summing the 

contributions of each individual noise sources. To be able to 
perform the calculation it is necessary to introduce a 
parametar that determines the noise radiation sources. The 
parameter used in that sense commonly is brightness [8,9]. 
Taking into account the Planck law of black body radiation in 
the radio frequency spectrum and using the Raleigh-Johnson 
approximation, the brightness in the direction θ, ϕ from which 
noise of frequency f comes can be expressed as: 
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where tb(θ,ϕ) brightness temperature in the observed 
directionθ, ϕ, which originates from noise sources. 
Accordingly, effective temperature of brightness tb from the 
body radiating noise is defined using power of noise radiation 
Pb [2,8]: 
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Integrating noise power at all spatial angles and taking into 
account the characteristics of antenna F(θ,ϕ)antenna noise 
temperature can be expressed in a way [6,8] 

∫ ∫

∫ ∫
=

ππ

ππ

ϕθθϕθ

ϕθθϕθϕθ

2

0 0

2

0 0

sin),(

sin),(),(

ddF

ddtF
t

b

a   (6) 

Natural source noise can be atmospheric noise, cosmic 
noise, noise from Earth and noise from different cosmic 
objects. Cosmic noise decreases approximately with the 
square of the frequency so that the above 1 GHz is very small 
and can be ignored by receiver operating in the microwave 
range. Noise from Earth, that correlates average noise 
temperature of 254 K, is important only for satellite antenna 
with the main radiation bean directed to Earth. There are 
number noises from many cosmic objects, but the only 
significant is the noise from the Sun. The Sun noise 
significantly affects on antenna noise only when large 
direction antenna with main radiation beam directed to the 
Sun. Atmospheric noise can derive from two sources. In The 
first is electrostatic discharge in atmosphere that overcomes 
for frequency range bellow 50 MHz. The last is emission in 
atmosphere due to water vapor and oxygen that is dominant in 
high frequency range. Figure 1. shows temperature of 
atmosphere brightness versus antenna elevation and frequency 
when average concentrate of tropopause water vapor is 10 
g/m3. [2]. Considering only atmospheric influence and if 

space angle of antenna effective radiation Ωa, is less then 
space angle of noise source radiation Ωb, temperature of 
antenna noise can be equalized with temperature of noise 
source brightness 

baba tt ΩΩ <≈ ,                         (7) 
 

 
Figure 1. Temperature of atmosphere brightness versus antenna 

elevation and frequency when average concentrate of 
tropopause water vapor is 10 g/m3 for calm and good in 

standard atmosphere weather 

III. NEURAL MODEL OF MICROWAVE ANTENNA 
NOISE TEMPERATURE 

The model of noise temperature of receiver antenna in 
wireless communication system in microwave range considers 
only influences by atmosphere as dominant noise source while 
other noise sources are taken as inappreciable. For large space 
angle of antenna radiation, antenna noise temperature is 
approximately equal as temperature of antenna brightness 
from atmosphere that radiates noise. Also, it considers calm 
and good weather with constant atmospheric pressure  
1013.25 mb and atmospheric temperature T=25° C. For given 
conditions, brightness temperature depends on water vapor 
concentration ah, antenna elevation angle θ and frequency f. 
The problem should be modeled as the function 

),,( fagt hb θ=                               (8) 

The neural model given as function y=y(x,w), where y is 
neural network function and w is a connection weight matrice 
among neurons [3,4], has input vector  x=[ah, θ, f]T and output 
vector y=[tb]. The modeling brightness is done by using 
Multilayer Perceptron Network (MLP) with appropriate MLP 
neural model defined as: 

),,,(),],,([ Wfaffayt hMLP
T

hb θθ == w           (9) 

where fMLP is transfer function of  MLP network used for 
realization neural model. If weight matrice w is presented as 
matrix structure, it can cause difficulties in implementation 
neural network and in its training algorithm. For this reason, 
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neural network weight matrice w is replaced by set of neural 
network weights whose elements are weight matrices and 
vector of biases of neural network layers. During process of 
training, values of weights W change to adjust function fMLP to 
model function. 

The figure 2. presents the architecture of MLP neural model 
of antenna brightness temperature versus atmosphere in 
microwave range while the atmosphere conditions are 
constant. The vector of l-th hidden layer outputs can be 
presented using vector yl with dimension Nl × 1 where Nl is 
number of neurons in l-th layer. i-th elements of vector yl[i] is 
output of i-th neurons from s-th neural layer (s=l+1 
considering input layer also) vi

(s)=vi
(l+1), viz 

T)1()1(
2

)1(
1 ],,,[ +++= l

N
ll

l l
vvv Ky . Further 

)( 1 llll F bywy += −                        (10) 

where yl-1 is a Nl-1 × 1 vector of (l-1)-th hidden layer outputs, 
wl is a Nl × Nl-1 connection weight matrix among (l-1)-th and 
l-th hidden layer neurons, and bl is a vector containing biases 
of l-th hidden layer neurons. In the above notation y0 
represents outputs of the buffered input layer y0 = x. The 
element wl[i,j] from weight matrix wl represents connection 
weight between  i-th neuron of (l-1) hidden layer and j-th 
neuron of l hidden layer, viz between i-th neuron network 
layer s=l and j-th neuron in network layer s=l+1, while 
bi

(l)=b[i] is bias value of  i-th neuron in hidden layer l.  F, the 
transfer function of hidden layer neurons, is hyperbolic 
tangent sigmoid 
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Figure 2. The architecture of MLP neural model of antenna 

brightness temperature tb versus water vapor concentration ah, 
antenna elevation angle θ and frequency f 

All neurons from the last hidden layer H are connected with 
the neuron of the output layer. Since the transfer function of 
output layer is linear, the output of the network is: 

Hobt yw=                                (12) 

where wo is a 1 × NH connection weight matrix among the H-
th hidden layer neurons and output layer neurons (Figure 3). 
Thus, set of network weights is presented as 

{ }HoHW bbwww ,...,,,,..., 11=                (13) 

The notation of MLP models MLPH-N1-…-Ni-…-NH  where 
H represents hidden layers number and Ni is the numbers of 
neurons of i-th hidden layer. 

IV. MODELLING RESULTS 

MatLab 7.0 software development environment is used for 
realization and training MLP model. The training of neural 
model is done using 1110 samples that are visual read from 
the graphics in [2] (One graphic for water vapor concentration 
ah = 10 g/m3 is shown in Figure 1.). The samples are read in 
frequency range 2 GHz ≤ f ≤ 45 GHz for antenna elevation 
θ = 0°, 5°, 10°, 20°, 45° and 90°, and for water vapor 
concentration ah, = 0, 3, 7.5, 13 and 17 g/m3. Levenberg-
Marquartd method is used for training neural model with 
accuracy 10-5. To achieve the best trained MLP model, many 
different MLPH-N1-…-Ni-…-NH  models are trained where 
H = 2 and 4 ≤ Ni ≤ 30. 

TABLE I. THE TESTING RESULTS FOR EIGHT MLP MODELS 

MLP model WCE [%] ACE [%] rPPM
 

MLP2-9-8 5.51 1.05 0.9986 
MLP2-9-5 6.80 1.04 0.9984 
MLP2-10-9 6.85 1.06 0.9984 
MLP2-8-8 7.05 1.01 0.9984 
MLP2-10-4 7.15 1.11 0.9984 
MLP2-10-9 7.21 1.05 0.9983 
MLP2-9-9 7.46 1.06 0.9981 
MLP2-9-5 5.93 1.20 0.9980 

 
Figure 3. Scattering diagram for MLP2-9-8 model 

The test of every trained MLP model is done with the set of 
444 samples that are read in frequency 2 GHz  ≤ f ≤ 45 GHz 
for antenna elevation θ = 30° and for water vapor 
concentration ah, = 0, 3, 7.5, 13, and 17 g/m3, as well as for 
antenna elevation θ = 0°, 5°, 10°, 20°, 30°, 45° and 90°, and 
for water vapor concentration ah = 10 g/m3. These test 
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samples have not been used in training. The basic criterion for 
selection the best MLP network is the maximum value of 
Pearson Product-Moment correlation coefficient rPPM. [2-5]. 
Test results of successfully trained MLP networks are 
presented in the Tables I together with the average test error 
(ATE) and the worst case error (WCE). 

 
Figure 4. Antenna brightness temperature caused by atmospheric 

noise versus frequency obtainet by using MLP2-9-8 model for water 
vapor concentration ah, = 10 g/m3 and antenna elevation θ = 5°, 10°, 
20° and 45° and comparison these values with referent values read 

from the graphics in [2] 

 
Figure 5. 3D presentation of antenna brightness temperature caused 

by atmosphere that radiates noise versus antenna elevation and 
frequency for water vapor concentration ah, = 10 g/m3 (results were 

obtained by using MLP2-9-8 model) 

The model MLP2-9-8 is chosen as representative model of 
antenna brightness temperature caused by atmospheric noise. 
Figure 3. shows the scattering diagram that this model gives in 
testing process. It can be seen very satisfying agreement 
between neural model output and samples that are visual read 
from the graphics in Figure 1. 

The model MLP2-9-8 is used for simulation of antenna 
brightness temperature caused by atmosphere that radiates 
noise versus antenna elevation and frequency. Figure 4. show 
simulation results for antenna elevation θ = 5°, 10°, 20° and 
45° and comparison these values with referent values read 
from the graphics [1,2]. It can be seen very satisfying 
agreement between these results and referent values proving 

the choice of this model. Figure 5. presents 3D dependence of 
antenna brightness temperature versus atmosphere that 
radiates noise versus antenna elevation and frequency using 
8099 points per surface. This dependence is got for less then 3 
seconds using Pentium IV 1.4 GHz and 2GB RAM proving 
great simulation speed of chosen neural model. 

V. CONCLUSION 

During the process of designing the modern wireless 
communication systems, procedures for estimation of external 
noise have a very important role due to external noise can 
significantly influences to services quality of wireless 
systems. Classic way of visual reading from different printed 
graphics can be time consuming and with great error 
possibility because of visual reading and applying 
interpolation formulas. The good alternative can be neural 
networks models of complex graphs from various 
recommendations for antenna noise calculation. Neural model 
can avoid errors due to manual graphs reading enabling faster 
calculation of the level of external noise of receiver. 

Neural model also enables the automation of the process of 
predicting noise power of receiver making one suitable 
method for the efficient analysis of the entire coverage area of 
wireless communication system transmitters in a big number 
of points that is of vital importance for the design and analysis 
of all components of modern wireless communication 
systems. 
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