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Abstract – The application of a Radial Basis Function (RBF) 

neural network for two-dimensional Direction of Arrival (DOA) 
estimation of two coherent sources is considered in this paper. To 
provide network training and testing datasets, the narrowband 
signal model and rectangular antenna array geometry are 
assumed. Simulation results of the network are presented to 
verify its effectiveness in 2D DOA estimation and particularly its 
ability to separate two closely spaced coherent sources. This 
feature of the RBF network as well as capability to operate in 
real time represents its major advantage over the well known 
MUSIC algorithm with spatial smoothing pre-processing (SSP) 
scheme.  
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I. INTRODUCTION 

Smart antenna plays crucial role in modern wireless 
communication systems. By adjusting the beam pattern as the 
desired user and interference move it is able to significantly 
improve the system capacity. Concerning this, direction-of-
arrival (DOA) estimation of users’ signals is performed using 
the spatial covariance matrix of received signals at antenna 
array elements. Based on the information provided by the 
DOA estimation algorithm, weights are calculated and 
radiation pattern of the array is reshaped to amplify the 
desired signal and cancel the interference. To estimate DOAs 
of non-coherent sources the subspace based methods reported 
in [1] and [2] use the property that the rank of the signal 
component of a nonsingular spatial covariance matrix equals 
the number of radiating sources. In this case, the signal and 
noise subspaces can be obtained by eigen-decomposition of 
the covariance matrix. However, this property is not valid for 
coherent sources. The spatial smoothing is the best known 
preprocessing technique that is applied to circumvent the 
problems encountered in DOA estimation of coherent signals 
[3]. A disadvantage of spatial smoothing is the requirement to 
form subarrays whose number must be equal to or greater than 
the number of signals. This effectively reduces the antenna 
array size and ultimately reduces the resolution of the 
estimation method. Therefore, this technique has 
shortcomings when DOAs of closely spaced coherent sources 
have to be estimated.  

In this paper, we propose a RBF neural network-based 
model to estimate DOAs of coherent sources in both azimuth 

and elevation. As shown in the paper, this approach is very 
efficient and accurate as it is independent on the 
eigenstructure of the covariance matrix [4]. DOA estimation is 
based on the simulation data of two coherent sources at the 
same elevation and different azimuth angles and mutual 
distances. The observed space is from -45° to 45°, both in 
azimuth and elevation plane. Performance of the developed 
neural model is verified using test data, not included in the 
training process. The obtained results and comparison to 
MUSIC with SSP proves the good generalization capability of 
the RBF neural model. 

This paper is organized as follows. Section II introduces the 
signal model for narrowband coherent sources. Section III 
describes the architecture of an RBF neural network (RBF-
NN) and corresponding training procedure. Section IV 
presents data pre-processing for the network training, RBF-
NN modeling results and comparison with MUSIC with SSP. 
Section VI, the Conclusion, summarizes the main results. 

II. SIGNAL MODEL 

Let us consider a uniform rectangular array (URA) 
composed of M × N omnidirectional antenna elements 
(sensors), as shown in Fig. 1. Each antenna element is denoted 
by its coordinates (m, n), where m = 0, 1, 2, … M - 1 and n = 
0, 1, 2, ... N - 1. Elements of the URA are placed along the y- 
and z-directions with constant inter-element spacing of dy and 
dz, respectively. To avoid spatial aliasing, distance between 
adjacent elements in the URA is usually half a wavelength, 
dy=dz=d=λ/2. 

 
Fig. 1. Uniform rectangular array (URA) 
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For K narrowband coherent signals, centered at frequency 
ω0, that impinge on the URA from directions {(φ1,θ1), (φ2,θ2), 
…, (φK,θK)} in azimuth and elevation, the signal received by 
the array elements can be written as 

 )()(),()( ttt nsAx += θϕ                         (1) 

where x(t), n(t), and s(t) are given by 
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Vector of antenna array outputs is denoted by x(t), s(t) stands 
for the vector of source signals while n(t) represents noise 
vector as signals incident on the array elements are assumed 
to have some noise associated with them. The phase 
differences between signals collected by the array elements 
make it possible to calculate DOAs. If the phase reference 
point is located at (m, n) = (0, 0) then the phase of the k-th 
incident wave at the element with coordinates (m, n) can be 
written as follows 
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Therefore, the steering vector of the k-th incident signal is 
given by 
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where k = 1, 2, ... K. A(φ,θ) in Eq. (1) is a steering matrix 
whose columns are steering vectors towards K different 
directions of arrival and it can be written as follows 

  ]...[),( )()1()()3()2()1( KKk aaaaaaA −= Kθϕ       (5) 

Finally, the spatial covariance matrix R of the received noisy 
signals can be defined by 

      IASAxxR 2)}()({ σ+== HH ttE               (6) 

where E{} is the expectation operator, H denotes the complex 
conjugate transpose operation, σ2 is the noise variance, I is the 
identity matrix, S is K×K signal covariance matrix given by 
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In Eq. (7), c=[ρ1 ρ2 . . . ρK]T  where ρi, i=1, 2,…K, denotes the 
relative amplitude and phase between the ith and lth source 
(ρl=1). It can be observed that the signal subspace of matrix R 
is of rank one instead of K and the noise subspace is 
orthogonal to Ac instead of the columns of A which implies 
the failure of the subspace based method when the spatial 
covariance matrix R is used in this form. 
 
 

III. RADIAL BASIS FUNCTION (RBF) NEURAL 
NETWORKS 

Neurons in a Radial Basis Function (RBF) neural network 
are organized into three layers, an input, an output as well as 
one hidden layer. Every neuron in each layer of the network is 
connected to every neuron in the adjacent forward layer, and 
no connections are permitted between the neurons belonging 
to the same layer. Each neuron is characterized by its transfer 
function and each connection between two neurons by a 
weight. Transfer functions of neurons of the input and output 
layers are usually linear whereas neurons of the hidden layer 
have radial basis transfer function that performs non-linear 
mapping. The main parameters of radial basis function are a 
centre vector and standard deviation (spread). The mapping 
function depends on distance between the input vector and the 
centre vector. An RBF network with n-dimensional input 

nRx∈  and m-dimensional output mRy∈  can be represented 
by the weighted summation of a finite number of radial basis 
functions as follows 
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where ψ(||x-xi||) is the radial basis function of x, obtained by 
shifting ψ(||x ||) by xi, L is a set of arbitrary functions and xi 
are centers of the radial basis functions. In Eq. (8), ψ is 
usually assumed to be un-normalized Gaussian function given 
by 
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where σ denotes the standard deviation of the radial basis 
function (spread). Gaussian function is highly nonlinear, and 
it is able to provide good characteristics for incremental 
learning.  

Training process of an RBF neural network begins by 
separating data into training and testing set. Input and output 
of the network are the domain and the range pairs (p, t), 
respectively. The error goal (usually MSE - Mean Squared 
Error) is a controlling parameter of the training process 
chosen in advance. In the particular case, the spread (standard 
deviation) of the radial basis function is equal for all hidden 
neurons. As the best value of this parameter cannot be a priori 
known, it is usually experimentally determined through the 
training of a number of neural networks and comparing their 
performance.   

The algorithm used to determine the cluster centers and 
weights between the hidden and the output layer is Orthogonal 
Least Squares (OLS). Initially, the hidden layer of the network 
contains no neurons. Following the OLS algorithm, only one 
neuron is added in iteration with the center equal to the input 
vector that causes the maximum error. After that, weights 
between neurons (wi,j) are recalculated. This process continues 
until the previously defined criteria for the MSE is met or the 
maximum number of neurons in the hidden layer is reached. 
The size of the RBF network (number of neurons in the 
hidden layer) is known at fully trained network. Once trained, 
the network is able to give accurate responses to those inputs 
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that have not been presented to the network in the training 
process. The test set is taken from the same distribution as the 
inputs used in the training set. Accuracy of the trained RBF 
neural network can be expressed using statistical parameters 
such as worst case error (WCE (%)), average case error (ACE 
(%)) and Pearson Product-Moment correlation coefficient 

IV. MODELLING RESULTS IN CASE OF TWO 
COHERENT SOURCES 

The training data are collected at several positions of two 
coherent sources in azimuth and elevation. The observed 
space is from -45° to 45°, both in azimuth and elevation. It is 
assumed that both sources are at the same elevation plane, and 
at different mutual distances in azimuth plane (2°, 5°, 10°, 
20°, 30°, 50°, 60°, and 90°). The resolution of training 
samples is 2° in azimuth, and 5° in elevation. However, 
testing set is formed at mutual distances 3°, 17°, 35°, 55°, and 
75°, and in steps of 2.7° in azimuth and 3° in elevation. To 
simulate the presence of white Gaussian noise, random 
numbers were added to the training and testing data. The 
Signal to Noise Ratio (SNR) is assumed to be 15 dB, and 
distance between array elements is taken to be half a 
wavelength. Spatial covariance matrix is estimated from 5 
snapshots of received signals. 

As a first step in developing a neural network to estimate 
2D DOAs, simple preprocessing of spatial covariance matrix 
is performed. The matrix is organized in a vector in such a 
manner that real and imaginary parts of complex matrix 
elements are separated. As the matrix R is symmetrical with 
respect to the diagonal, the elements of its upper triangular 
part provide sufficient information for DOA estimation of 
coherent sources. If a 16-element rectangular antenna array is 
employed at the receiver that implies 256 neurons in the input 
layer of the RBF network. Since azimuth and elevation angles 
of two coherent sources have to be estimated, the neural 
network is going to have 4 outputs (Fig. 2).  After a number of 
neural models are developed, the one demonstrating the best 
test statistics is chosen for 2D DOA estimation of coherent 
sources. In our case, the optimum RBF network contains 733 
neurons in its hidden layer, and correlation coefficient of 
0.9976.  

 

 
 

Fig. 2. RBF neural model for 2D DOA estimation of coherent 
sources 

The RMSE (Root Mean Squared Error) of the estimates 
from the testing set is plotted in Fig. 3 and Fig. 4 for mutual 
distance of 35° between two sources. The error is calculated 
using the formula 

})(){( 22
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Keeping in mind that only one RBF neural network is 
employed to estimate azimuth and elevation DOAs of 
coherent sources, the estimation error in Fig. 3 and Fig. 4 is 
not so significant. The network demonstrates similar 
performance for all incident angles of coherent signals.  

 
Fig. 3. RMSE of the 2D DOA estimates for the first coherent 

source (mutual distance between sources is 35°) 

 
Fig. 4. RMSE of the 2D DOA estimates for the second coherent 

source (mutual distance between sources is 35°) 

TABLE I 
RBF-NN ESTIMATES 

Actual DOAs (°) 
(φ1, θ1), (φ2, θ2), 

RBF-NN estimates (°) 
(φ1est, θ1est), (φ2est, θ2est), 

(-10, 10) (10, 10) (-9.37, 9.78) (-9.57, 9.78) 
(-14, -17) (14, -17) (-15.23, -16.51) (14.43, -16.51) 
(-21, 26) (21, 26) (-22.51, 25,69) ( 22.75, 25.69) 
(-30, -35) (30, -35) (-30.84, -35.55) (30.60, -35.55) 

TABLE II 
MUSIC WITH SSP ESTIMATES 

Actual DOAs (°) 
(φ1, θ1), (φ2, θ2), 

MUSIC with SSP estimates (°) 
(φ1est, θ1est), (φ2est, θ2est) 

(-10, 10) (10, 10) (1, 10.5) (1, 10.5) 
(-14, -17) (14, -17) (8, -16.5) (8, -16.5) 
(-21, 26) (21, 26) (-18.5, 25) (19.5, 26) 
(-30, -35) (30, -35) (-31, -34.5) (-30, -35) 

431



 
 
 

In Table I and Table II, 2D DOA estimates of the RBF-NN 
and MUSIC algorithm with SSP are given for several 
positions of coherent sources. Based on this data it can be 
concluded that neural model gives more accurate estimates in 
the wide sector of azimuth and elevation angles. Further, the 
first two rows of the Table II show the inability of the MUSIC 
with SSP to separate and detect two closely spaced coherent 
sources.  

 

 
Fig. 5. MUSIC with SSP spectrum for two coherent sources 

positioned at (-10°, 10°) and (-10°, 10°) 

 
Fig. 6. MUSIC with SSP spectrum for two coherent sources 

positioned at (-14°, -17°) and (14°, -17°) 
 

 
Fig. 7. MUSIC with SSP spectrum for two coherent sources 

positioned at (-21°, 26°) and (21°, 26°) 
 

The results presented in Fig. 5 and Fig. 6, are consequence 
of a reduced effective aperture of the antenna array after the 
decorrelating procedure (SSP) is applied to the original spatial 
covariance matrix. The results can be even deteriorated in 
case of a lower SNR. Fig. 7 demonstrates good estimation 
results of MUSIC, for two sources separated by 42°. On the 
other side, RBF neural network detects sources independently 
of their mutual distance. This feature of the network is 
considered as its main advantage over the conventional 
MUSIC with SSP. In addition, neural network considers DOA 
estimation as a function approximation problem avoiding 
complex matrix calculations and 2D spectrum search. 
Therefore, it is able to obtain 2D DOA estimates in real time 
unlike the time-consuming MUSIC algorithm.  

To improve the accuracy of RBF-NN 2D DOA estimates 
and to expand the observed space, authors of this work are 
going to develop a more complex and efficient model based 
on smaller RBF neural networks.  

 

V. CONCLUSION 

In this paper, we propose an RBF neural network-based 
model for the efficient 2D DOA estimation of coherent 
sources. Using the assumption of a 16-element rectangular 
antenna array at the receiver, positions of coherent sources are 
estimated in a wide sector of azimuth and elevation angles. 
The developed neural model does not require special pre-
processing technique to decorrelate signals. Simulation results 
demonstrate the ability of the model to provide more accurate 
results than 2D MUSIC algorithm with spatial smoothing 
preprocessing technique. Besides, the RBF neural model is 
able to operate in real-time and outperforms MUSIC with SSP 
in terms of speed of computation.  

ACKNOWLEDGEMENT 

This work was supported by the project TR-32052 of the 
Serbian Ministry of Education, Science and Technological 
Development. 

REFERENCES 

[1] R. Schmidt, “Multiple Emitter Location and Signal Parameter 
Estimation,” IEEE Trans. on Antennas and Propagation, vol. 34, 
no. 3, pp. 276-280, 1986. 

[2] R. Roy, T. Kailath, “ESPRIT-Estimation of Signal Parameters 
via Rotational Invariance Techniques,” IEEE Trans. on 
Acoustics, Speech and Signal Processing, vol. 37, no. 7, pp. 984 
– 995, 1989.  

[3] H. Yi, X. Zhou, “On 2-D Forward-Backward Spatial Smoothing 
for Azimuth and Elevation Estimation of Coherent Signals,” 
Antennas and Propagation Society International Symposium, 
2005 IEEE, vol. 2B, pp. 80-83, 2005. 

[4] M. Agatonović, Z. Stanković, N. Dončov, L. Sit, B. 
Milovanović, T. Zwick, “Application of Artificial Neural 
Networks for Efficient High-Resolution 2D DOA Estimation,” 
Radioengineering, vol. 21, pp. 1178-1186, 2012. 

432


