

Algorithm for modular exponentiation in public key
cryptosystems

Plamen Stoianov1

Abstract – The operational speed of most public key
cryptosystems is largely determined by the modular
exponentiation operation. The required modular exponentiation
is computed by a series of modular multiplications. Optimized
algorithms are required for various platforms, especially for
lower-end platforms. These require the algorithms to be efficient
and consume as little resources as possible. This article presents
algorithm for calculating modular exponentiation using less
precomputation without division. The aim is to improve
computational efficiency of modular exponentiation based public
key cryptosystems.

Keywords – Cryptography, modular reduction, modular
exponentiation, long integers.

I. INTRODUCTION

 The word cryptography comes from the Greek words
crypto (hidden) and graphy (writing), hence cryptography is
the art of secret writing. More formally cryptography is the
study of mathematical techniques related to the security
services of information security. The ITU-T X.800 standard
defines the security services provided by a system to give a
specific kind of protection to system resources. The standard
divides security services into the following four categories:
- Confidentiality is a service used to keep the content of
information accessible to only those authorized to have it.
This service includes both of protection of all user data
transmitted between two points over a period of time as well
as protection of traffic flow from analysis.
- Integrity is a service that requires that computer system
assets and transmitted information be capable of modification
only by authorized users. Modification includes writing,
changing, changing the status, deleting, creating, and the
delaying or replaying of transmitted messages. It is important
to point out that integrity relates to active attacks and
therefore, it is concerned with detection rather than
prevention. Moreover, integrity can be provided with or
without recovery, the first option being the more attractive
alternative.
- Authentication is a service that is concerned with assuring
that the origin of a message is correctly identified. That is,
information delivered over a channel should be authenticated
as to the origin, date of origin, data content, time sent, etc. For

these reasons this service is subdivided into two major classes:
entity authentication and data origin authentication. Notice
that the second class of authentication implicitly provides data
integrity. An important part of almost all modern security
protocols is public-key algorithms.
- Non-repudiation is a service which prevents both the sender
and the receiver of a transmission from denying previous
commitments or actions. When disputes arise due to an entity
denying that certain actions were taken, a means to resolve the
situation is necessary. A procedure involving a trusted third
party is needed to resolve the dispute.
 Specifically, unauthorized access to information must be
prevented, privacy must be protected, and the authenticity of
electronic documents must be established. Cryptography, or
the art and science of keeping messages secure, allows us to
solve these problems.
 These security services are provided by using crypto-
graphic algorithms. There are two major classes of algorithms
in cryptography: Symmetric algorithms and Public-Key
algorithms.
 Symmetric algorithms are algorithms where the
encryption and decryption key is the same, or where the
decryption key can easily be calculated from the encryption
key. The main function of these algorithms, which are also
called secret-key algorithms, is encryption of data, often at
high speeds. Private-key algorithms require the sender and the
receiver to agree on the key prior to the communication taking
place. The security of private-key algorithms rests in the key;
divulging the key means that anyone can encrypt and decrypt
messages. Therefore, as long as the communication needs to
remain secret, the key must remain secret.
 There are two types of symmetric-key algorithms: block
ciphers and stream ciphers. Block ciphers are a function
which maps n-bit plaintext to n-bit ciphertext blocks (n is
called the blocklength). The most used secret-key algorithms
are DES, 3DES, AES, RC5 etc. Stream ciphers operate on a
single bit of plaintext at a time. They are useful because the
encryption transformation can change for each symbol of the
message being encrypted. They can be used when the data
must be processed one symbol at a time because of lack of
equipment memory or limited buffering.
 One of the major issues with symmetric key systems is the
need to find an efficient method to agree on and exchange the
secret keys securely. This is known as the key distribution
problem.
 A major advance in cryptography came in 1976 with the
publication by Diffie and Hellman (New Directions of
Cryptography) [1] of a new concept of cryptography. This
new concept was called public-key cryptography. Public-Key
Cryptography (PKC) is based on the idea of separating the
key used to encrypt a message from the one used to decrypt it.
Pair of matched keys is used, termed “public” and “private”

1Plamen Stoianov is with the Electronic Engineering Faculty at
Technical University of Varna, Communications Equipment and
Technology Department, Studentska 1, Varna , Bulgaria,

 E-mail: pl_stoianov@tu-varna.bg.

491

keys. Anyone that wants to send a message to party A can
encrypt that message using A's public key but only A can
decrypt the message using her private key. In implementing a
public-key cryptosystem, it is understood that A's private key
should be kept secret at all times. Furthermore, even though
A's public key is publicly available to everyone, including A's
adversaries, it is impossible for anyone, except A, to derive
the private key.
 In general, one can divide practical public-key algorithms
into three families [2]:
- Algorithms based on the integer factorization problem: given
a positive integer n, find its prime factorization. RSA [3], the
most widely used public-key encryption algorithm, is based
on the difficulty of solving this problem. RSA problem: given
a positive integer n that is a two distinct odd primes p and q, a
positive integer e such that gcd(e,(p-1)(q-1))=1, and an integer
c, find an integer m such that m e ≡ c mod n.
- Algorithms based on the discrete logarithm problem: given
α and β find the integer x such that α x β≡ mod p. The
Diffie-Hellman key exchange protocol is based on this
problem: given a prime p, a generator α and elements

aα mod p and bα mod p, find abα mod p.
- Algorithms based on Elliptic Curves. Elliptic curve
cryptosystems are the most recent family of practical public-
key algorithms, but are rapidly gaining acceptance. Due to
their reduced processing needs, elliptic curves are especially
attractive for embedded applications. Despite the differences
between these mathematical problems, all three algorithm
families have something in common: they all perform
complex operations on very large numbers, typically 1024 bits
in length for the RSA and discrete logarithm systems or 160
bits in length for the elliptic curve systems.

II. OVERVIEW OF ALGORITHMS FOR MODULAR
REDUCTION AND EXPONENTIATION

The most common operation performed in public-key

schemes is modular exponentiation, i.e., the operation A E
mod M. Performing computation of numbers of this large size
(e.g., 2048 bit) with multiple precisions is not easy or fast to
implement. Modular exponentiations are typically calculated
using repeated square-and-multiply algorithms with modular
reductions in between. In [2] this method is called binary
exponentiation. A similar algorithm is also used for point
multiplication in ECC. The basic idea of binary method is to
compute modular exponentiation using the binary expression
of exponent E. The exponentiation operation is broken into a
series of squaring and multiplication operations by the use of
the binary method. There are two variations of the algorithm:
left to right (LRB) and right to left binary exponentiation
(RLB). LRB algorithm computes the exponentiation starting
from the most significant bit position of the exponent E and
proceeding to the right, which is depicted as follows.

Input : integers A, M, E = (e n e 1−n …e
1
 e

0
) 2

Output: X=A E mod M
1. X ←1
2. for i = n to 0 do

 X ← X 2 mod M
 If e i = 1 , then X ← X.A mod M
 3. Return (X)
 Let n + 1 be the bitlength of the binary representation of E,
and let w(e) be the number of 1’s in this representation.
Algorithm LRB performs t + 1 modular squarings and w(e) −
1 modular multiplications by A. Different from the LRB , the
RLB algorithm computes the exponentiation starting from the
last significant bit position of the exponent E and proceeding
to the left. Each multiplication (or squaring) operation
requires a large number of clock cycles due to the long
operand length depending on the implementation. The binary
method is frequently used in smartcards and embedded
devices, due to its simplicity and low resource consumption.
 Mostly mentioned are various windowing techniques as a
generalization of the basic algorithm in which more than one
bit of the exponent is processed per iteration. The basic idea is
as follows: the exponent is divided into digits (windows).
Algorithm LRB can thus be considered as a special case
where the window size is equal to 1.
 The k-ary method (fixed window) is an optimization of the
binary method. Bits of the exponent are scanned in groups as
against the binary method in which a bit is scanned per
iteration. The algorithm for this technique is shown below.
Input : integers A, M, E = (e n e 1−n …e

1
 e

0
) b where

 b = 2 k for k≥ 1
Output: X=A E mod M

1. precomputation
1.1 a 0 ←1

 1.2 for i = 1 to 2 k -1 do : a i ← a 1−i .A mod M
2. X ←1
3. for i = n down to 0 do

3.1 X ← X
k2 mod M

3.2 X ← X.a
ie mod M

 4. return (X)

 Most methods rely on modular reduction algorithm
functions to reduce the size and complexity of the required
arithmetic operations to carry out their public-key
cryptosystem implementations more efficiently [4] [5].
The Classical, Barrett, and Montgomery algorithms are well-
known modular reduction algorithms for large integers used in
public-key cryptosystems
 Montgomery Reduction can be implemented in two ways:
word-serial and bit-serial. For a software implementation, the
bit-serial algorithm becomes too slow because the processor is
built on word-level arithmetic. Therefore, software
implementations typically utilize the word-level Montgomery
Reduction algorithm. If we assume a word-level length of n,

492

to reduce a 2n-bit number to an n-bit number, 2 full
multiplications and 2 full addition operations are required.
Thus, a full modular multiplication requires 3 multiplication
and 2 addition operations [2]. This also applies to large digit
approaches such as ours, where the multiplication/addition
operations on large digits are further decomposed into word-
size operations. The approach of Montgomery avoids the time
consuming trial division that is the common bottleneck of
other algorithms. His method is proven to be very efficient
and is the basis of many implementations of modular
multiplication in hardware as well as software such as high-
radix design [6][7], scalable design [8], parallel calculation
quotient and partial result and signed-digit recoding [9].
The notation is as follows: MONT(X, Y) = XY R 1− mod N
For a word base b = 2 a , R is usually chosen such that R = 2 r
= (2 a) l > N.
To compute Z = xyRmodN, one first has to compute the
Montgomery function of x and R 2 modM to get Z ' = xR
modM. Mont(Z’, y) gives the desired result. When computing
the Montgomery product T = XY R 1− modM, the following
procedure was proposed:
INPUT: Integers M(odd), x ⊂ [0,M − 1], y ⊂ [0,M − 1],
 R = 2 r ,
and M ' = −M 1− mod 2 r
OUTPUT: xyR 1− modM
 1. T ← 0
 2. For i from 0 to (l -1) do:
 2.1 m i ← (t 0 + x i y)M ' mod 2 a

 2.2 T ← (T + + x i y + m i M)/ 2 a
 3. If T ≥ M, then T ← T − M
 4. Return (T)
 An architecture based on Montgomery’s algorithm[10] is
probably the best studied architecture in hardware.
Differences appeared because of a different approach for
avoiding long carry chains.
 The Barrett reduction [11] requires the pre-computation of

one parameter, μ = ⎥
⎦

⎥
⎢
⎣

⎢
M
b k2

, where M is the modulus of the

multiplication operation. Since this is a parameter that only
depends on the modulus, it remains unchanged throughout the
entire exponentiation operation, thus the calculation time of
this parameter is not significant. If the number to be reduced
is N, the reduction then takes the form
Q= ⎣ ⎦llk bbA /)./(2 μ− by integer division which requires
two n-bit multiplies and one n-bit subtract, leaving the total at
three multiplications and one subtraction. In [12], the authors
proposed a method called folding to reduce the amount of
computations for a Barrett’s reduction scheme.Their method
relies on the precomputation of the constant M’ = 2 s3 mod M.

III. PROPOSED ALGORITHM

 The algorithm proposed related to computing A E mod M
uses a combination between sliding windows exponentiation
and an improvement of the reduction method for moduli of
special form b n – c [2][13]. By reduction method for moduli
of special form the time of execution depends on the value of
the radix. Before involution the radix is being checked first. If
A>M/2, the modular operation calculates by
 (M-A) l mod M. (M-A) 2 mod M =
 = M 2 mod M – 2M.Amod M + A 2 mod M =
 A 2 mod M (1)
Equation (1) is valid for all the even powers
 (M-A) n2 mod M = A n2 mod M for n≥ 1.
By odd powers a correction
 (M-A) 12 +n mod M = M - A 12 +n mod M (2)
(1) and (2) could be used by modular multiplication of two
integers : AB mod M.
 By A>M/2 and B>M/2 (M-A)(M-B) mod M = AB mod M.
 By A>M/2 and B<M/2 (M-A) B mod M = M-AB mod M.
The modular squaring algorithm is described in Algorithm 1.
Algorithm 1 . EXPMOD(A,M)
Input : Integers A, M=(m 1−n … m 1 m 0), m 1−n =1

Output: Y=A 2 mod M
1. if A>M/2 then A←M-A
2. P ← 2 n -M, Y← A 2
3. while Q>0 do

 Q ← ⎣ ⎦nY 2/

 Y ← Q.P + Y mod 2 n
4. if Y≥M then X←Y-M
5. Return (Y)
The modular multiplication algorithm is presented in

Algorithm 2.
Algorithm 2 . MULMOD(A,B,M)
Input : Integers A,B, M=(m 1−n … m 1 m 0), m 1−n =1
Output: Y=ABmod M

1. 0← j if A>M/2 then A←M-A, j← j+1
 if B>M/2 then A←M-B, j← j+1
2. P ← 2 n -M, Y← A.B
3. while Q>0 do

a. Q ← ⎣ ⎦nY 2/

b. X ← Q.P + Y mod 2 n
4. if Y≥M then Y←Y-M
5. if j=1 them X←M-Y
6. Return (Y)

 For the sliding window algorithm the window size may be
of variable length and hence the partitioning may be
performed so that the number of zero-windows is as large as
possible, thus reducing the number of modular multiplication

493

necessary in the squaring and multiplication phases.
Furthermore, as all possible partitions have to start (i.e. in the
right side) with digit 1, the pre-processing step needs to be
performed for odd values only.
Algorithm 3. Sliding window with EXPMOD and MULMOD
Input: Integers A, M, E=(e t e 1−t ...e 1 e 0) 2 , k≥ 1
 k is called window size
Output: X=A E mod M

1. precomputation : compute and store A i

 A 1 ←A, EXPMOD(A,M), A 2 ←Y

 for i=1 to 2 1−k -1 do MULMOD(A 12 −i ,A 2 ,M),

A 12 +i ←Y
 for i = 0 to p, decompose E into zero and nonzero
windows f i of length L(f i)≤ k

2. X←A
pf

3. for i = p-1 down to 0 do

 for j=1 to L(f i) do EXPMOD(X,M), X ←Y ; X
)(2 ifL

 if f i ≠ 0 then MULMOD(X,A
if ,M), X←Y

4. Return (X)

IV. CONCLUSION

Modular exponentiation is the main operation to RSA-
based public-key cryptosystems. It is performed using
uccessive modular multiplications. This operation is time
consuming for large operands, which is always the case in
cryptography. For software or hardware fast cryptosystems,
one needs thus reducing the total number of modular
multiplications required. The proposed algorithm for modular
exponentiation is effective by transmission of short messages.
It is faster then the classical algorithm why because it does not
use integer division. The check in step 1 of EXPMOD and
MULMOD reduces the execution time, because always
A<M/2. The execution time for step 3 is less, as smaller is the
value of ⎣ ⎦nX 2/ . With multiplicity of the modulus different
than 8 is selected n=8k and step 2 is being executed while
P<M. This permits canceling of rotation within steps 3.1 и 3.2
and operating with bytes only.

REFERENCES

[1] W. Diffie, M. Hellman, “New direction in cryptography”, IEEE
Trans., Inform. Theory IT-22, pp. 644-654, Nov.1976.

[2] A. Menezes, P. van Oorschot and S. Vanstone, "Handbook of
Applied Cryptography”, CRC Press, first ed. 1997.

[3] R. Rivest, A. Shamir and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems”,
Communications of the ACM, 21(2), pp. 120-126, 1978.

[4] C. Koc, “Analysis of Sliding Window Techniques for
Exponentation”, Computers and Mathematics with
Applications, 30(10), pp.17-24, 1995.

[5] B. Moller, “Improved Techniques for Fast Exponentiation”,
Information Security and Cryptology-ICIST 2002, Springer-
Verlag LNCS 2587, pp.298-312, 2003.

[6] N. Pinckney, D. Harris, “Parralelized radix-4 scalable
Montgomery multipliers”, Journal of Integrated Circuits and
Systems, vol.3, no.1, pp.39-45, 2008.

[7] L. Tawalbeh, A. Tenca and C. Koc, “A radix-4 scalable design”,
IEEE Potentials, vol.24, pp.16-18, 2005.

[8] A. Tenca, C. Koc, “A scalable architecture for modular
multiplication based on Montgomery’s algorithm, IEEE Trans.
On computer, vol.52, no.9, pp.1215-1221, 2003.

[9] N. Pinckney, P. Amberg and D. Harris, “Parallelized Booth-
encoded radix-4 Montgomery multipliers”, proceeding of 16th
IFIP/IEEE International Conference on Very Large Scale
Integration, 2008.

[10] P. Montgomery, “Modular multiplication without trial division”,
Mathematics of Computation, vol.44, pp.519-521, 1985.

[11] P. Barrett, “Implementing the Rivest Shamir and Adleman
public key encryption algorithm on a standard digital signal
processor”, Advances in Cryptology- CRYPTO’86, pp.313-323,
1987.

[12] W. Hasenplaugh, G. Gaubatz and V. Gopal, “Fast Modular
Reduction”, 18th IEEE Symposium on Computer Arithmetic
(ARITH’07), pp.225-229, 2007.

[13] П.Стоянов, В. Димов, “Модулна редукция за криптографски
алгоритми без предварителни изчисления”, Научни трудове
на Русенски университет, том 47, серия 3.2, стр.80-83, 2008.

494

