
 
 
 

Algorithm for modular exponentiation in public key 
cryptosystems 
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Abstract – The operational speed of most public key 
cryptosystems is largely determined by the modular 
exponentiation operation. The required modular exponentiation 
is computed by a series of modular multiplications. Optimized 
algorithms are required for various platforms, especially for 
lower-end platforms. These require the algorithms to be efficient 
and consume as little resources as possible. This article presents 
algorithm for calculating modular exponentiation using less 
precomputation without division. The aim is to improve 
computational efficiency of modular exponentiation based public 
key cryptosystems. 
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I. INTRODUCTION  

    The word cryptography comes from the Greek words 
crypto (hidden) and graphy (writing), hence cryptography is 
the art of secret writing. More formally cryptography is the 
study of mathematical techniques related to the security 
services of information security. The ITU-T X.800 standard 
defines the security services provided by a system to give a 
specific kind of protection to system resources. The standard 
divides security services into the following four categories: 
- Confidentiality is a service used to keep the content of 
information accessible to only those authorized to have it. 
This service includes both of protection of all user data 
transmitted between two points over a period of time as well 
as protection of traffic flow from analysis. 
- Integrity is a service that requires that computer system 
assets and transmitted information be capable of modification 
only by authorized users. Modification includes writing, 
changing, changing the status, deleting, creating, and the 
delaying or replaying of transmitted messages. It is important 
to point out that integrity relates to active attacks and 
therefore, it is concerned with detection rather than 
prevention. Moreover, integrity can be provided with or 
without recovery, the first option being the more attractive 
alternative. 
- Authentication is a service that is concerned with assuring 
that the origin of a message is correctly identified. That is, 
information delivered over a channel should be authenticated 
as to the origin, date of origin, data content, time sent, etc. For 

these reasons this service is subdivided into two major classes: 
entity authentication and data origin authentication. Notice 
that the second class of authentication implicitly provides data 
integrity. An important part of almost all modern security 
protocols is public-key algorithms. 
- Non-repudiation is a service which prevents both the sender 
and the receiver of a transmission from denying previous 
commitments or actions. When disputes arise due to an entity 
denying that certain actions were taken, a means to resolve the 
situation is necessary. A procedure involving a trusted third 
party is needed to resolve the dispute.  
     Specifically, unauthorized access to information must be 
prevented, privacy must be protected, and the authenticity of 
electronic documents must be established. Cryptography, or 
the art and science of keeping messages secure, allows us to 
solve these problems. 
     These security services are provided by using crypto-
graphic algorithms. There are two major classes of algorithms 
in cryptography: Symmetric algorithms and Public-Key 
algorithms.  
      Symmetric algorithms are algorithms where the 
encryption and decryption key is the same, or where the 
decryption key can easily be calculated from the encryption 
key. The main function of these algorithms, which are also 
called secret-key algorithms, is encryption of data, often at 
high speeds. Private-key algorithms require the sender and the 
receiver to agree on the key prior to the communication taking 
place. The security of private-key algorithms rests in the key; 
divulging the key means that anyone can encrypt and decrypt 
messages. Therefore, as long as the communication needs to 
remain secret, the key must remain secret. 
     There are two types of symmetric-key algorithms: block 
ciphers and stream ciphers. Block ciphers are a function 
which maps n-bit plaintext to n-bit ciphertext blocks (n is 
called the blocklength). The most used secret-key algorithms 
are DES, 3DES, AES, RC5 etc. Stream ciphers operate on a 
single bit of plaintext at a time. They are useful because the 
encryption transformation can change for each symbol of the 
message being encrypted. They can be used when the data 
must be processed one symbol at a time because of lack of 
equipment memory or limited buffering. 
      One of the major issues with symmetric key systems is the 
need to find an efficient method to agree on and exchange the 
secret keys securely. This is known as the key distribution 
problem. 
      A major advance in cryptography came in 1976 with the 
publication by Diffie and Hellman (New Directions of 
Cryptography) [1] of a new concept of cryptography. This 
new concept was called public-key cryptography. Public-Key 
Cryptography (PKC) is based on the idea of separating the 
key used to encrypt a message from the one used to decrypt it. 
Pair of matched keys is used, termed “public” and “private” 
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keys. Anyone that wants to send a message to party A can 
encrypt that message using A's public key but only A can 
decrypt the message using her private key. In implementing a 
public-key cryptosystem, it is understood that A's private key 
should be kept secret at all times. Furthermore, even though 
A's public key is publicly available to everyone, including A's 
adversaries, it is impossible for anyone, except A, to derive 
the private key. 
    In general, one can divide practical public-key algorithms 
into three families [2]: 
- Algorithms based on the integer factorization problem: given 
a positive integer n, find its prime factorization. RSA [3], the 
most widely used public-key encryption algorithm, is based 
on the difficulty of solving this problem. RSA problem: given 
a positive integer n that is a two distinct odd primes p and q, a 
positive integer e such that gcd(e,(p-1)(q-1))=1, and an integer 
c, find an integer m such that m e ≡ c mod n. 
- Algorithms based on the discrete logarithm problem: given 
α  and β  find the integer x such that α x β≡ mod p. The 
Diffie-Hellman key exchange protocol is based on this 
problem: given a prime p, a generator α  and elements 

aα mod p and bα  mod p, find abα  mod p. 
- Algorithms based on Elliptic Curves. Elliptic curve 
cryptosystems are the most recent family of practical public-
key algorithms, but are rapidly gaining acceptance. Due to 
their reduced processing needs, elliptic curves are especially 
attractive for embedded applications. Despite the differences 
between these mathematical problems, all three algorithm 
families have something in common: they all perform 
complex operations on very large numbers, typically 1024 bits 
in length for the RSA and discrete logarithm systems or 160 
bits in length for the elliptic curve systems.  

 
 

II. OVERVIEW OF ALGORITHMS FOR MODULAR 
REDUCTION AND EXPONENTIATION 

 
The most common operation performed in public-key 

schemes is modular exponentiation, i.e., the operation A E  
mod M. Performing computation of numbers of this large size 
(e.g., 2048 bit) with multiple precisions is not easy or fast to 
implement. Modular exponentiations are typically calculated 
using repeated square-and-multiply algorithms with modular 
reductions in between. In [2] this method is called binary 
exponentiation. A similar algorithm is also used for point 
multiplication in ECC. The basic idea of binary method is to 
compute modular exponentiation using the binary expression 
of exponent E. The exponentiation operation is broken into a 
series of squaring and multiplication operations by the use of 
the binary method. There are two variations of the  algorithm: 
left to right (LRB) and right to left binary exponentiation 
(RLB). LRB algorithm computes the exponentiation starting 
from the most significant bit position of the exponent E and 
proceeding to the right, which is depicted as follows. 

Input : integers A, M, E = ( e n e 1−n  …e
1
 e

0
) 2    

Output: X=A E  mod M 
1. X ←1 
2. for i = n to 0 do  

 X ←  X 2 mod M 
 If  e i = 1 , then X ←  X.A mod M 
       3.   Return (X) 
    Let n + 1 be the bitlength of the binary representation of E, 
and let w(e) be the number of 1’s in this representation. 
Algorithm LRB performs t + 1 modular squarings and w(e) − 
1 modular multiplications by A. Different from the LRB ,  the 
RLB algorithm computes the exponentiation starting from the 
last significant bit position of the exponent E and proceeding 
to the left. Each multiplication (or squaring) operation 
requires a large number of clock cycles due to the long 
operand length depending on the implementation. The binary 
method is frequently used in smartcards and embedded 
devices, due to its simplicity and low resource consumption. 
     Mostly mentioned are various windowing techniques as a 
generalization of the basic algorithm in which more than one 
bit of the exponent is processed per iteration. The basic idea is 
as follows: the exponent is divided into digits (windows). 
Algorithm LRB can thus be considered as a special case 
where the window size is equal to 1. 
   The k-ary method (fixed window) is an optimization of the 
binary method. Bits of the exponent are scanned in groups as 
against the binary method in which a bit is scanned per 
iteration. The algorithm for this technique is shown below. 
Input : integers A, M, E = ( e n e 1−n  …e

1
 e

0
) b   where  

            b = 2 k  for k≥ 1 
Output: X=A E  mod M 

1. precomputation 
1.1 a 0  ←1 

       1.2  for i = 1 to 2 k -1 do : a i ←  a 1−i .A mod M 
2. X ←1 
3. for i = n down to 0 do  

3.1 X ←  X
k2 mod M 

3.2  X ←  X.a
ie mod M 

       4.   return (X) 
 
    Most methods rely on modular reduction algorithm 
functions to reduce the size and complexity of the required 
arithmetic operations to carry out their public-key 
cryptosystem implementations more efficiently [4] [ 5].  
The Classical, Barrett, and Montgomery algorithms are well-
known modular reduction algorithms for large integers used in 
public-key cryptosystems 
    Montgomery Reduction can be implemented in two ways: 
word-serial and bit-serial. For a software implementation, the 
bit-serial algorithm becomes too slow because the processor is 
built on word-level arithmetic. Therefore, software 
implementations typically utilize the word-level Montgomery 
Reduction algorithm. If we assume a word-level length of n, 
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to reduce a 2n-bit number to an n-bit number, 2 full 
multiplications and 2 full addition operations are required. 
Thus, a full modular multiplication requires 3 multiplication 
and 2 addition operations [2]. This also applies to large digit 
approaches such as ours, where the multiplication/addition 
operations on large digits are further decomposed into word-
size operations. The approach of Montgomery avoids the time 
consuming trial division that is the common bottleneck of 
other algorithms. His method is proven to be very efficient 
and is the basis of many implementations of modular 
multiplication in hardware as well as software such as high-
radix design [6][7], scalable design [8], parallel calculation 
quotient and partial result  and signed-digit recoding [9]. 
The notation is as follows: MONT(X, Y) = XY R 1− mod N   
For a word base b = 2 a , R is usually chosen such that R = 2 r  
= (2 a ) l  > N. 
To compute Z = xyRmodN, one first has to compute the 
Montgomery function of x and R 2  modM to get Z '  = xR 
modM. Mont(Z’, y) gives the desired result. When computing 
the Montgomery product T = XY R 1−  modM, the following 
procedure was proposed: 
INPUT: Integers M(odd), x ⊂  [0,M − 1], y ⊂  [0,M − 1], 
   R = 2 r , 
and M '  = −M 1− mod 2 r  
OUTPUT: xyR 1− modM 
        1. T ←   0 
        2. For i from 0 to (l -1) do: 
              2.1 m i ←    (t 0  + x i y)M ' mod 2 a  

              2.2 T  ←   (T + + x i y + m i M)/ 2 a  
        3. If T ≥  M, then T  ←   T − M 
        4. Return (T) 
   An architecture based on Montgomery’s algorithm[10] is 
probably the best studied architecture in hardware. 
Differences appeared because of a different approach for 
avoiding long carry chains. 
    The Barrett reduction [11] requires the pre-computation of 

one parameter, μ = ⎥
⎦

⎥
⎢
⎣

⎢
M
b k2

, where M is the modulus of the 

multiplication operation. Since this is a parameter that only 
depends on the modulus, it remains unchanged throughout the 
entire exponentiation operation, thus the calculation time of 
this parameter is not significant. If the number to be reduced 
is N, the reduction then takes the form 
Q= ⎣ ⎦llk bbA /)./( 2 μ−  by integer division which requires 
two n-bit multiplies and one n-bit subtract, leaving the total at 
three multiplications and one subtraction. In [12], the authors 
proposed a method called folding to reduce the amount of 
computations for a Barrett’s reduction scheme.Their method 
relies on the precomputation of the constant M’ = 2 s3 mod M. 
 
 

III. PROPOSED ALGORITHM 

 

     The algorithm proposed related to computing A E mod M 
uses a combination between sliding windows exponentiation 
and an improvement of the reduction method for moduli of 
special form b n – c [2][13]. By reduction method for moduli 
of special form the time of execution depends on the value of 
the radix. Before involution the radix is being checked first. If 
A>M/2, the modular operation calculates by   
                       (M-A) l mod M. (M-A) 2 mod M =  
             = M 2 mod M – 2M.Amod M + A 2 mod M =  
                                      A 2 mod M                                   (1) 
Equation (1) is valid for all the even powers 
             (M-A) n2 mod M = A n2 mod M for n≥ 1.  
By odd powers a correction   
                  (M-A) 12 +n mod M = M - A 12 +n mod M          (2) 
(1) and (2) could be used by modular multiplication of two 
integers : AB mod M.  
   By A>M/2 and B>M/2 (M-A)(M-B) mod M = AB mod M.   
   By A>M/2 and B<M/2   (M-A) B mod M = M-AB mod M. 
The modular squaring algorithm is described in Algorithm 1. 
Algorithm 1 . EXPMOD(A,M) 
Input : Integers A, M=(m 1−n … m 1 m 0 ), m 1−n =1 

Output: Y=A 2 mod M 
1. if A>M/2 then A←M-A 
2. P ← 2 n -M, Y←  A 2  
3. while Q>0 do 

 Q ←  ⎣ ⎦nY 2/  

 Y ←  Q.P + Y mod 2 n  
4. if  Y≥M then X←Y-M 
5. Return (Y) 
The modular multiplication algorithm is presented in 

Algorithm 2. 
Algorithm 2 . MULMOD(A,B,M) 
Input : Integers A,B, M=(m 1−n … m 1 m 0 ), m 1−n =1 
Output: Y=ABmod M 

1. 0←  j  if A>M/2 then A←M-A, j← j+1 
                    if B>M/2 then  A←M-B, j← j+1 
2. P ← 2 n -M, Y←  A.B 
3. while Q>0 do 

a. Q ←  ⎣ ⎦nY 2/  

b. X ←  Q.P + Y mod 2 n  
4. if  Y≥M then Y←Y-M 
5. if  j=1 them  X←M-Y 
6. Return (Y) 

     For the sliding window algorithm the window size may be 
of variable length and hence the partitioning may be  
performed so that the number of zero-windows is as large as 
possible, thus reducing the number of modular multiplication 
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necessary in the squaring and multiplication phases. 
Furthermore, as all possible partitions have to start (i.e. in the 
right side) with digit 1, the pre-processing step needs to be 
performed for odd values only. 
Algorithm 3. Sliding window with EXPMOD and MULMOD 
Input: Integers A, M, E=(e t e 1−t ...e 1 e 0 ) 2 , k≥ 1 
            k is called window size 
Output: X=A E mod M 

1. precomputation : compute and store A i  

 A 1 ←A, EXPMOD(A,M), A 2 ←Y 

 for i=1 to 2 1−k -1 do MULMOD(A 12 −i ,A 2 ,M), 

A 12 +i ←Y 
 for i = 0 to p, decompose E into zero and nonzero 
windows f i of length L(f i )≤ k 

2. X←A
pf  

3. for i = p-1 down to 0 do 

 for j=1 to  L(f i ) do EXPMOD(X,M), X ←Y ; X
)(2 ifL

 

 if  f i ≠ 0 then  MULMOD(X,A
if ,M), X←Y 

4. Return (X) 
 

IV. CONCLUSION 

Modular exponentiation is the main operation to RSA-
based public-key cryptosystems. It is performed using  
uccessive modular multiplications. This operation is time 
consuming for large operands, which is always the case in 
cryptography. For software or hardware fast cryptosystems, 
one needs thus reducing the total number of modular 
multiplications required. The proposed algorithm for modular 
exponentiation is effective by transmission of short messages. 
It is faster then the classical algorithm why because it does not 
use integer division. The check in step 1 of EXPMOD and 
MULMOD reduces  the execution time, because always 
A<M/2. The execution time for step 3 is less, as smaller is the 
value of ⎣ ⎦nX 2/ . With multiplicity of the modulus different 
than 8 is selected n=8k and step 2 is being executed while 
P<M. This permits canceling of rotation within steps 3.1 и 3.2 
and operating with bytes only. 
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