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Abstract – On the basis of Markov theory for optimal 
nonlinear filtration a problem is set and being researched for the 
estimation and maintenance of autonomous synchronization in 
the system for radio communication among remote moving 
objects. 
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The analysis of systems using pseudo-mode with frequency 
hopping has specific characteristics determined by the need 
for joint evaluation of discrete and continuous processes. 
Estimation error of filtration can be carried out in accordance 
with methods of Markov theory [1]. 

If applied common description of the useful signal in the 
form of known function of a discrete data parameter ( )td  and 
random delay ( )tτ  can be written as follows: 

( ) ( )( ) ( )( )[ ]ttdttsdtts ττ −−= ,,   (1) 
The transmitted signal in the analyzed case of the proposed 

work is the sum of n  elementary signals, each of which with 
duration of  

sT  seconds, i.e. ( ) ( )∑
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Then in the presence of random delays, adopted useful signal 
is: 
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The values of the information parameter of the respective 
clock intervals sT  form a simple homogeneous Markov chain 

kd , ,...1,0=k  with n  states. The accidental time delay, which 
is a consequence of the relative movement between the 
receiver and transmitter, in the general case can be considered 
as a first component of a diffusion Markov process ( )tλ , i.e. 
( ) ( )tt 1λτ = . In the theory of nonlinear filtering [1], process ( )tλ  

satisfies the system stochastic differential equations 
containing a’ priori information about the signal: 
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Here ( )tii λλ =  are components of multidimensional Markov 
random vector ( )tλ , ( )tni  is independent of the white noise.  
 
A’ priori probabilistic density ( )tWpr ,λ  of random vector ( )tλ  
is described by the equation of Fokker-Planck-Kolmogorov: 
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where iK  is a deterministic function (transmission 
coefficient). 
Equation (3) characterizes the behaviour of the probabilistic 
density ( )tWpr ,λ  at any point in time. All available 
information on the parameters of the useful signal is contained 
in the final a’ posteriori probabilistic density 
( ) ( )i

otprt rtWtW ,, λλ =  of the vector ( )tλ , which satisfies the 
following integro differential equation: 
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wherein: 
( ) ( ) ( ) ( )[ ]λλλ ,,21, 2
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tr0  is adopted to implement interval [ ]t,0 , 
0N  – one-sided 

spectral density of white noise. 
Equation (4) describes the evolution of a’ posteriori 
probabilistic density. At the initial moment of time, a’ 
posteriori density coincides with the a’ priori. In the process 
of monitoring the implementation ( )tr  is accumulating 
information about the filtered parameters and a’ posteriori 
probabilistic density is concentrated in the vicinity of the 
assessed values of the parameters of the useful signal. Solving 
equation (4), and its modeling, is a complex task. Therefore, 
for practical purposes is assumed, that the a’ posteriori density 
( )tW t ,λ  at sufficiently high signal/noise ratio is close to 

normal. Then it is enough to estimate the value ( ) **
ii t λλ ≡  of 

the components of a vector tλ  and cumulants ( ) ijij hth =  
(Gaussian approximation in the theory of nonlinear filtration 
[1]), satisfying the following equations: 
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Equations (2) and (6) are equations for quasi optimal 
(quasi-linear) filtration, in accordance with which it can 
construct a device for filtration. These devices ensure 
minimum errors in filtration, characterized by the dispersions 
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( )thaaa =2σ  and the correlation moments ( )thij . In this case 

0=
dt

dhij  and by the function ( )tF ,*λ  is passing to its average 

value at the time ( )*λF . As a result, the equations (5), (6) can 
be written in the form: 
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ijj h=2σ  is independent of t  stationary value of the a’ 
posteriori dispersion of estimation of parameter ( )tjλ ; ijh  
characterized the degree of correlation of the parameter 
estimates, respectively to ( )tiλ  and ( )tjλ  at steady-state. 

In order compensation of the delay ( )tτ  in the transmission 
medium of the signal ( )ts , the same should be broadcast with 
overtaken in time ( )ty , i.e. be of the form: ( ) ( )[ ]tytsts y += . 
In case of delay ( )tτ  the useful signal at the input of the 
receiver will be: 

( )[ ] ( ) ( )( )[ ]ttyttstts yy τττ −+−=−   (9) 
Problem whose solution is the purpose of this study is to 

determine the value of ( )ty , at which is providing minimum 
mean square value of the offset ( )τε  in the time of reception 
of the signals at the input of the receiver in case of accidental 
delay ( )tτ , i.e.: 

( ) ( ) ( )[ ]ttytt ττε −−=    (10) 
For the determination of ( )ty  can be used all the current 

information about the random delay, which is contained in the 
realized oscillation ( )tr  for the interval [ ]t,0  at the input of 
receiver, whereupon this oscillation is the sum of the useful 
signal and the noise: 

( ) ( )[ ] ( )tnttstr y +−= τ . 
The signal emitted by the transmitter in random moment of 

time 0t , enters at the input of the receiver in a channel with a 

random delay time point 1t , so that the equality obviously is 
met: ( )ttt τ−= 10 . The raised problem can be reduced, so 
that based on the monitoring of implementation ( )tr  until the 

time of transmission of the signal ( ){ }00 0,0 tttrr t ≤≤=  to 

determine the overtaking ( )0ty , which is providing minimum 

mean square value of the offset ( )1tε  of the signal, taken at 

the moment of time 1t . As is known, the optimal mean square 
assessment coincides with the conditional mathematical 
expectation, i.e.: 

( ) ( ){ } ( ) ττττ dtprtMty ot
o ∫
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== 0110
, ( ) ( ){ }ot

ortptp 101 ττ =  (11) 

is a’ posteriori, i.e. the conditional at monitoring of 

implementation 0
0
tr  density of the probabilities of the random 

process ( )tτ  at the moment 1t . At a fixed time of signal 
broadcasting 0t , the time of its occurrence at the input of the 
receiver 1t , determining according to equality (10) is random. 
To avoid examining of the process in random moments of 
time may be introduced process: 

( ) ( )101 tt ττ = .    (12) 
From (10) it follows that: 

( ) ( )[ ] ( )[ ]0101001 ttttt τττττ +=+= .  (13) 
So ( )01 tp τ  is the current a posteriori probabilistic density of 

the process ( )t1τ : ( ) ( ){ } ( ){ }00
001101
tt

o rtprtptp τττ == . 

In its physical sense ( )t1τ  is the magnitude of delaying of 
emitted signal at the moment t . 
Ratio (12) is a transcendental equation on the basis of which it 
is possible to determine the ( )t1τ  at given process. From 
formula (13) can be obtained an equation defining the 
relationship between ( )tp τ1

 and ( ) ( ){ }0t
orltptlp += ττ , , i.e. 

with a’ posteriori probabilistic density of the random delay at 
some point of the time ( )lt +τ . When l  considering as a 
random variable with probabilistic density ( )lp , and ( )lt +τ  
as a function of this value, then on the basis of (12) is 
satisfied: 

( ){ } ( ){ } ( )dllprltprtp tt ∫
∞

∞−

=+== 00
001 ττττ .     (14) 

From equation (3.13) follows that: ( )tl 1τ= , i.e. 

( ) { }tlplp 1= , from where follows the ratio determining 

( )tp ,τ1  at a set probabilistic density ( )tlp ,τ : 

( ) ( ) ( )dltlptlptp 11 ∫
∞

∞−

= ,ττ .    (15) 

Equation (15) connects the probabilistic characteristics of the 
process ( )t1τ  with the characteristics of process ( )tτ . The 
algorithm for calculation of the ( )tlp ,τ , follows from the 
results of the theory of optimal nonlinear filtration. The 
accidental delay may accepts non-negative values, i.e. 
( ) 01 ≥tτ , ( ) 01 =τtp  to 0<τ . Therefore, in equation (15) is 

only used ( )tlp ,τ  to 0≥l , i.e. only the extrapolated density of 

probability. Monitoring ( )tr  is determined by the formula (9). 
Therefore, the determination of the a’ posteriori probability 

density ( )tlp ,τ  based on the monitoring of 0tr  is solvable 
task of Markov theory for optimal nonlinear filtration. 
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