iCEST 2013 26 - 29 June 2013, Ohrid, Macedonia
Adaptive Vision System

Rosen Spirovand Neli Grancharova

Abgract — This paper presents the object detection algorithm Hence, a color-based algorithm is more reasonable for
implemented in FPGA was based on feature detection and image applications that require low computational effort. In general,
ggﬁéi:qighingbj:ft&iﬁ?nﬂ?{‘ iﬁ“‘;n”i?ﬁ;iggg ii trs]c?ftv?/;(r)(;?asg each method has its own advantages and disadvantages. More

: ; i : - complex algorithm typically gives very high accuracy rate but
algorithm was independently developed and examined in alsoprequirges lots)(;? con{pguting reZourgces. Gene):al design
MATLAB to evaluate its performance and verify its . .
effectiveness. stages are illustrated in next steps.

% First, the original image was converted to a different

Keywords —I mage Processing, Filters, FPGA, Video. color space, namely modified YUV. Then the skin pixels were

segmented based on the appropriate U range.
% Morphological filtering was applied to reduce false
positives. Then each connected region of detected pixels in
|. INTRODUCTION the image was labeled.
« The area of each labeled region was computed and an

The goal of this project was to create an FPGA systemdiea-based filtering was applied.
deiect and track an object in real time. The overall setup < Only regions with large area were considered face
included the Verilog program, an Altera DE2 board, a camergegions.
and a VGA monitor. The object detection algorithm < The centroid of each face region was also computed
implemented here was based on feature detection and im&gehow its location.
filtering. After the object region was detected, its location was Converting the object pixel information to the modified
determined by calculating the centroid of neighboring featuNUV color space. The conversion equations are shown as
pixels [1]. follows:

A software-based algorithm was independently developed Y= (R+2G+B)/4; U=R-G; V=B-G Q)
and examined in MATLAB to evaluate its performance and These equations allowedhresholding to work
verify its effectiveness. However, it was infeasible tindependently of object color intensity.
implement the same algorithm in Verilog due to the
limitations of the language. Hence, several stages of the
algorithm were modified.

Experimental results proved the accuracy and
effectiveness of the hardware realtime implementation as the
algorithm was able to handle varying types of input videp
frame. All calculation was performed in real time.
Although the system can be furthered improved to obtain
better results, overall the project was a success as it enabled Figure 1 Experimental kit and different tone samples
any inputted face to be accurately detected and tracked.

After object pixels were converted to the modified YUV
spae, the pixels can be segmented based on the following

experimented threshold0 < U <74 and -40<V <11
[I. DESIGN AND THE SOFTWARE ALGORITHM

Different approaches to detect and track dynamic objeqts,
including feature-based, appearance-based, and color-based
have been actively researched and published in literature. The
feature-based approach detects a dynamic’s objct based| on
dynamic object features, such as human eyes and naqse. 1 !
Because of its complexity, this method requires lots of e N B
computing and memory resources. Although compared to
other methods this one gives higher accuracy rate, it is not
suitable for power-limited devices.

'Rosen Spirov is with the Faculty of Electronias Technice
University of Varna, 1 Studentska Str, Varna 9010, Bulgariaakt-

Figure 2 TheMATLAB results
rosexel@abv.bg.

2Neli Grancharova isvith the Faculty of Telecommunications As seen in figure2, the blue channel had the least

Technical University of Varna, 1 Studentska Swarna 901(cortribution to human skin color. Additionally, leaving out
Bulgaria ' the blue channel would have little impact on thresholding and

577

» ICEST 2013 26 - 29 June 2013, Ohrid, Macedonia

skin filtering. This also implies the insignificance of the Vin Verilog, the final output passed through the VGA driver to
component in the YUV format. Therefore, the object detectidme displayed on the VGA monitor.The hardware algorithm is
algorithm using here was based on the U component onghown in Figure 3.
Applying the suggested threshold for the U component would
produce a binary image with raw segmentation result.
Applying morphological filtering including erosiamd fresche eins—/———CaloreEinaion
hole filling would, firstly, reduce the background noise and,
secondly, fill in missing pixels of the detected face regions
[2]. The MATLAB provided built-in functions-#merodeand
imfill for these two operations as:
« outp = imerode(inp, stréfguare’5));
The commandmerode erodes the input imagep using a

square of size 5 as a structuring element and returns the Figure 3 - Hardware Algorithm

eroded imageoutp. This operation removed any group of** Thresholding is in this step, each input video frame

pixels that had size smaller than the structuring element’'s. Was converted to a “binary image” showing the segmented
« outp = imfill(inp, 'holes); raw result. S|r_10e 10-bit color_was used in Verilog, adjusting

The commandmfill fills holes in the binary input imagep ~the aforementioned U range yields 40 < U < 296.

and produces the output imagetp. Applying this operation * Spatial Filtering is in this step was similar to the

allowed the missing pixels of the detected face regions to BEPSION operation used in the software algorithm. However,
filled in. Thus, it made each face region appear as offé€ structuring element used here did not have any particular
connected region. shape. Instead, for every pixel its neighboring pixels in a

After each group of detected pixels became one connect@ neighborhood were checked. If more than 75% of its
region, connected component labeling algorithm was applieB€ighbors were skin pixelp,was also a skin pixel. Otherwise
This process labeled each connected region with a nump@Mvas a non-skin pixel. This allowed most background noise
allowing us to distinguish between different detected region® e removed because usually noise scattered randomly
The built-in functionbwlabelfor this operation was available through space. _ _
in MATLAB. In general, there are two main methods to label© €xamine the neighbors around a pixel, their values needed
connected regions in a binary image, known as recursive dfdPe stored. Therefore, ten shift registers were created to
sequential algorithms.The commaretjionpropscan be used buffer_the_values of ten consecutwe rows in each frame. As
to extract different properties, including area and centroid, 8¢en in Figure 4, each register was 640-bit long to hold the
each labeled region in the label matrix obtained fowvtabel ~ Pinary values of 640 pixels in a row.

Filtering detected regions based on their areas would
successfully remove all background noise and any skin region
that was not likely to be a objedfo be considered a object
region, a connected group of skin pixels need to have an area
of at least 26% of the largest area. This number was obtained
from experiments on training images. Therefore, many Figure 4 - Ten shift registers for ten consecutive rows
regions of false positives could be removed in this stage,
depicted in:
> object_idx = find(object_area > (.26)*max(object_area));
> object_shown = ismember(L, object_idx);
These two commands performed the following tasks:

?ach bit in data regl was updated according to the X
coadinate. For instance, when the X coordinate was 2,
data_reg]?] was updated according to the result of
thresholding from the previous stage. Thdata_reglwas

o look for the connected regions whose areas were of Zé%gateg every C.|OCk (iycle. Aﬁerr].?t”ge bitsdai;aﬂr]eglwer:e
of the largest area and store their corresponding indicesypdated, Its entire value was shiftecita_reg us, other
face idx: registers (from data._re92 ttata_reglQ) were only updated

0 output the imagéace_showrhat contained the connected\’\’hen the X coordinate was 0. \{alu?s dﬁta_regZ to
regions found data_reglOwere used to examine a pixel’'s neighborhood.

The final stage was to determine object location. There was a trade-off between the number of shift registers

The centroid of each connected labeled object region Cgﬁlng used (i.e. the Siz€ Of_ the nelghborhoo_d) and the
be calculated by averaging the sum of X coordinates andp@rfqrmance of the spatial filter. A larger ne|ghborhopd
coordinates separately’he centroid of each object region isreqUIred more registers to be used but, at the same time,
denoted by the blue asterisk. Here the centroid of eaeHowed more noise to be removed. . .
connected region was extracted using regionprops “ Applyl_ng temporal_fllterlng aII(_)we_d flickering to be

reduced significantly. The idea of designing such a filter was

borrowed from the project “Real-Time Cartoonifier” [4]. Even
[1l. DESIGN AND IMPLEMENTATION small changes in lighting could cause flickering and made the

result displayed on the VGA screen less stable. The temporal

Each current video frame was captured by the camera diltér was based on the following Verilog fragment:
sent to the FPGA’s decoder chip via a composite video cab)&. rcyporal FiterinG "

[3]. After the video signal was processed in different modulefs(VGA_x1 < AVGX_LPF + 10'D5) && (VGA_X1 > AVGX_LPF - 10D5) &&

578

»1ICEST 2013 26 - 29 June 2013, Ohrid, Macedonia

(VGA_Y1 < AVGY_LPF - 10'D5) && (VGA_Y1 > 10'D5))

BEGIN FLTR_REG <= FLTR_REG + FLTR3[0];

END

ELSE IF (VGA_X1 == 10'D600) && (VGA_Y1 == 10'D400))
BEGIN FLTR_REG <= 16'DO;

END IF (FLTR_REG > 16'D50) BEGIN

IF (AVG2 > 10'B1110111111)

BEGIN // CAN ALSO TRY B1110110111

FLTR3 <= 10'H3FF;

FLTR3_R <= 10'H3FF;

FLTR3_G <= 10'H3FF;

FLTR3_B <= 10H3FF

/I DRAW CENTROID

IF (CNTR > 19'D500) BEGIN // THRESHOLD WHEN #PIXELS IS TOO SMALL, NOTHING WILL BE

DETECTED

IF (((VGA_X1 < AVGX_R2 + 10'D10) && (VGA_X1 > AVGX_R2 - 10'D10) &&
(VGA_Y1 < AVGY_R2 + 10'D10) && (VGA_Y1 > AVGY_R2 - 10'D10)) ||
((VGA_X1 < AVGX_L2 + 10'D10) && (VGA_X1 > AVGX_L2 - 10'D10) &&

(VGA_Y1 < AVGY_L2 + 10'D10) && (VGA_Y1 > AVGY_L2 - 10'D10))) BEGIN

FLTR3_R <= 10'HO;

FLTR3_G <= 10'HO;

FLTR3_B <= 10'H3FF; Figure 7 The FPGA results, when there was a moved man

P — | | | | |

B I 0. First the neighboring pixels around the centroid were

FLTR3_R <= 10'HO; checked to see if they were skin pixels. If they were, it meant

P TRe 8 <= 1010, the centroid accurately located the face region. However, if

IF (CNTR > 19'D500) BEGIN I I I i i i i

I VO XL e Ko 10D10) &8 (VGA_ X1 > AVGX_R2 - 10/D10) 84, the neighboring plxels of the centrom_i were not skin pixels, it
(VGA_Y1 < AVGY_R2 + 10D10) & (VGA_Y1 > AVGY_R2 - 10D10)) || meant the centroid was somewhere in the background located

((VGA_X1 < AVGX_L2 + 10'D10) && (VGA_X1 > AVGX_L2 - 10'D10) &&
(VGA_Y1 < AVGY_L2 + 10'D10) && (VGA_Y1 > AVGY_L2 - 10'D10))) BEGIN
FLTR3 R <= 10HO;

between two detected face regions. The Verilog fragment is:

FLTR3_G <= 10'H0; /P¥** COMPUTING CENTROID FOR ALL DETECTED PIXEES™ //
FLTR3_B <= 10'H3FF; IF (VGA_X1> 10D20) && (VGA_X1< 10'D620)&&

......... e, (VGA_Y1> 10D20)&& (VGA_Y1< 10'D460))BEGIN

END IF (FLTR3 == 10H3FF) BEGIN

The filtered result of a pixel in this stage was determingfg= s+ veavi.

based on its average valwerg_out.If its average value was _ CNTR<= cNTR+ 1981

. END
greater than 0.06 , becouse the number obtained frem
experiments, the pixel was considered skin. Otherwise, tREoadr e &« (VAYI= 100478)8een

pixel was non-skinExperments of temporal filtering for a two AVGY<= suMY/cNTR , ,
GX_LPF <= AVGX_LPF - (AVGX_LPF >> 'D2) + (AVGX >> 'D2);

. . . . \Y
pixels is shown nFlgure 5 and Flgure 6, / blue is l,orange IS 0/:VGY_LPF<= AVGY_LPF - (AVGY_LPF>> 'D2)+ (AVGY >> 'D2);
SUMX <= 3080;

SUMY <= 30'80;

CNTR<= 19B0;

END

it /I***C OMPUTING CENTROID FOR LEFT HALVED FRAME****//
BIMHOTEHS CTORE. 26 42| 56| 4| 56 66| 74| 84| 6| 42 57| 62 78| 55| 66 52| 41 IF (VGA_X1> 10D20) && (VGA_X1< AVGX_LPF- 10'D10) &&
(VGA_Y1> 10D20)&& (VGA_Y1< 10'D460))BEGIN

IF (FLTR3 == 10H3FF) BEGIN

Kagpp i 42 |43 (K (5 A |47 [+ (49 A0+ [+H12 43 [H4 [HE +HE [HT

cnea deorrpargs

Figure 5 Example of temporal filtering for a pixel p1 SUNX_L<= SUMX_L+ VGA XI:
Xamsp i |1+ |its liva (a5 (i lier |iee |iee |inio [aetn | 3 |ind (i i s line a7 SUMY_L<= SUMY_L+ VGA_Y1,
CNTR L<= CNTR L+ 1981;
2, N I S) S O ™) O e
e
croiiEocr ofoot Joz7|o21) 04055 038|050 03] 06) 044061 | 046|050 | 071 fo7o|os| o4 END
cne gunTpay a|l ol 1 1 1 il A 1] 1| 1 1 1 1 1 IF (VGA_X1== 10D20)&& (VGA_Y1== 10D478))BEGIN

Figure 5 Example of temporal filtering for a pixel p2 AV PRy Pt

X Centroid Computation, was computed to locate theX L2<= AveX_L2- (aveX_L2>> 'D2)+ (AVeX_L>> 'D2);
. . AVGY_L2<= AVGY_L2- (AVGY_L2>> 'D2)+ (AVGY_L>> 'D2);

face region. Because connected component labeling was R®¥ (<= s0s0;

implemented as initially planned, it was infeasible to calculaf&"= o

the centroid for each face region separately. This limited the
/[*** COMPUTING CENTROID FOR RIGHT HALVED FRAME**//

number of faces to be detected to two as maximum. FiliS{vGa xi> avex_Lr + 10010)&& (VGA_X1< 10D620)8&

assume that only one face was present. Therefore, its centffh = (020t 10Pae0NBEeN

would just be the centroid of all detected pixels, as shown §y¥X_R<= sum_R+ VGA X1;
. . . SUMY_R<= SUMY_R+ VGA_Y1;
figure7. Note that this calculation would only be correct IENTR Res CNTR R+ 1001
one face was present. Although the pixels of one face regigfj
might not be connected and labeled as originally pIannedgGA_Xl: 10D621)&8 (VGA_Y1== 10D478))BEGIN
. AVGX_R<= SUMX_R/CNTR R;
simply calculating the centroid of all detected pixels still gav&ey_r<= sum_Ri cNTRR:
a good estimate for the face location. However, even if th-Ra avafa ey has oo (vt T oo
hands were present, calculating the centroid of all detecteg R<= 3080
. : . . SUMY_R<= 3080;
pixels still allowed us to locate the face region.This was @rrRr<= 1980;
reasonable estimate because, compared to the face area,Ethg. . : .
ince area-based filtering was also not applied, other skin
area of the hand/hands was much smaller. However, when. X
. : regons—mostly the hands were not entirely removed.
there were two faces present, calculating the centroid of : :
: . owever, even if the hands were present, calculating the
detected pixels would only track the location between twg ntroid of all detected pixels still allowed us to locate the
faces, rather than track each face separately. To separaeei P

track each face in a two-person frame, additional steps w ace region.This was a reasonable estimate because, compared
required, o0 the face area, the area of the hand/hands was much smaller.

579

:.,Fm

iCEST 2013

However, when there were two objects present, calculating
the centroid of all detected pixels would only track the
location between two objects, rather than track each object
separately. To separately track each object in a two-object
frame, additional steps were required. First the neighboring
pixels around the centroid were checked to see if they were
colour object pixels. If they were, it meant the centroid
accurately located the object region. However, if the
neighboring pixels of the centroid were not object pixels, it
meant the centroid was somewhere in the background located
between two detected object regions. To solve this problem,
the video frame was split into two according to where the
centroid.

26 - 29 June 2013, Ohrid, Macedonia

Figure10 The bloks and the hardware system

Within the lab setting, noise was very minimal and did
not alter the results. As long as a person was in the camera’s
view, his face would be accurately detected and tracked. His
distance relative to the camera did not affect the result. In the
presence of three or more people, the system could only detect
the faces but failed at tracking them.

Figure 8 The FPGA results, when there was light effects

_ I1l. CONCLUSION
To show how an object was tracked, a small box was

drawn around the centroid. The box moved according to the The |mage Processing Toolbox provided in MATLAB

movement of the object. However, if the object moved togowed the process of developing and testing the algorithm to

fast, the movement of the box might become less stabjg, more efficient. Furthermore, verifying the accuracy of the

Applying temporal filtering here allowed the box to MOVeyetection algorithm on still pictures provided fair results.

smoothly. The implementation of the temporal filter here wagpject detection and tracking is the process of determining

slightly different from the one shown previously. whether or not present it in an image. Unlike face recognition,
which distinguishes different human faces, face detection only
indicates whether or not an object is present in an image.
Object detection and tracking has been an active research area
for a long time because it is the initial important step in many
different applications, such as video surveillance, face
recognition, image enhancement, video coding, and energy
conservation.

Figure.9 The object tracking
The input Xn here was the location of the centroid before
filtering. What this equation meant was, withbeing close to [1]
1, current output ¥ would be more dependent on previous
output Yn-1than on current input. This prevented the centroid
box from moving too fast when there was an abrupt change in [2]
the movement of an object, asi2Y(1 -0)Xn+0Yn-1

REFERENCES

Furi A., Hang H.M., An efficient block-matching
algorithm for motion compensated coding, Proc. JSASSP,
pp.1063-1066, 2007.

Xyanra M. OG6paborka nzoOpaxeHun u uUppoBas
¢unbrparms,Ilon pen. T:Mup 2009.

A clock of 27 MHz was used for the face detection and [3] _Diaz J., E. Ros, F. Pelayo, *Fpga-based real-time
: . . o . - optical-flow system,” Circuits and Systems for Video

tracking algorithm. Since the timing was synchronized with Technology, IEEE Transactions on, vol. 16, Feb. 2006

the VGA clock, the VGA display was able to update within 4, Advanced Microcontroller Final Projects, or online at:

the time gap between drawing two consecutive frames [5].
The camera was able to detect and track objects in real time.
Error seemed to occur only when there was a transition from [5]
one person to two people or vice versa in the video frame. The
figure10 shown bloks and the working hardware system.

580

http://people.ece.cornell.edu/land/courses/ece5760Armja
ects

Jentz B, J. Rotem, Leveraging. FPGA coprocessors to
optimize high-performance digital video surveillance
systemswww.dsp-fpga.com/articles/jentz_and_rotem

