

Adaptive Vision System
Rosen Spirov1 and Neli Grancharova2

Abstract – This paper presents the object detection algorithm
implemented in FPGA was based on feature detection and image
filtering. Object detection and tracking is the process of
determining presention it in an image. A software-based
algorithm was independently developed and examined in
MATLAB to evaluate its performance and verify its
effectiveness.

Keywords – Image Processing, Filters, FPGA, Video.

I. INTRODUCTION

 The goal of this project was to create an FPGA system to
detect and track an object in real time. The overall setup
included the Verilog program, an Altera DE2 board, a camera,
and a VGA monitor. The object detection algorithm
implemented here was based on feature detection and image
filtering. After the object region was detected, its location was
determined by calculating the centroid of neighboring feature
pixels [1].
 A software-based algorithm was independently developed
and examined in MATLAB to evaluate its performance and
verify its effectiveness. However, it was infeasible to
implement the same algorithm in Verilog due to the
limitations of the language. Hence, several stages of the
algorithm were modified.
 Experimental results proved the accuracy and
effectiveness of the hardware realtime implementation as the
algorithm was able to handle varying types of input video
frame. All calculation was performed in real time.
Although the system can be furthered improved to obtain
better results, overall the project was a success as it enabled
any inputted face to be accurately detected and tracked.

II. DESIGN AND THE SOFTWARE ALGORITHM

 Different approaches to detect and track dynamic objects,
including feature-based, appearance-based, and color-based
have been actively researched and published in literature. The
feature-based approach detects a dynamic’s objct based on
dynamic object features, such as human eyes and nose.
Because of its complexity, this method requires lots of
computing and memory resources. Although compared to
other methods this one gives higher accuracy rate, it is not
suitable for power-limited devices.

Hence, a color-based algorithm is more reasonable for
applications that require low computational effort. In general,
each method has its own advantages and disadvantages. More
complex algorithm typically gives very high accuracy rate but
also requires lots of computing resources. General design
stages are illustrated in next steps.

� First, the original image was converted to a different
color space, namely modified YUV. Then the skin pixels were
segmented based on the appropriate U range.

� Morphological filtering was applied to reduce false
positives. Then each connected region of detected pixels in
the image was labeled.

� The area of each labeled region was computed and an
area-based filtering was applied.

� Only regions with large area were considered face
regions.

� The centroid of each face region was also computed
to show its location.
 Converting the object pixel information to the modified
YUV color space. The conversion equations are shown as
follows:

 Y= (R+2G+B)/4; U=R-G; V=B-G (1)
 These equations allowed thresholding to work
independently of object color intensity.

Figure 1 Experimental kit and different tone samples

After object pixels were converted to the modified YUV
space, the pixels can be segmented based on the following
experimented threshold 10 < U <74 and - 40 < V < 11 .

Figure 2 The MATLAB results

 As seen in figure2, the blue channel had the least
contribution to human skin color. Additionally, leaving out
the blue channel would have little impact on thresholding and

1Rosen Spirov is with the Faculty of Electronics at Technical
University of Varna, 1 Studentska Str, Varna 9010, Bulgaria, E-mail:
rosexel@abv.bg.

2Neli Grancharova is with the Faculty of Telecommunications at
Technical University of Varna, 1 Studentska Str, Varna 9010,
Bulgaria

577

skin filtering. This also implies the insignificance of the V
component in the YUV format. Therefore, the object detection
algorithm using here was based on the U component only.
Applying the suggested threshold for the U component would
produce a binary image with raw segmentation result.
 Applying morphological filtering including erosion and
hole filling would, firstly, reduce the background noise and,
secondly, fill in missing pixels of the detected face regions
[2]. The MATLAB provided built-in functions—imerode and
imfill for these two operations as:

• outp = imerode(inp, strel('square', 5));
The command imerode erodes the input image inp using a
square of size 5 as a structuring element and returns the
eroded image outp. This operation removed any group of
pixels that had size smaller than the structuring element’s.

• outp = imfill(inp, 'holes');
The command imfill fills holes in the binary input image inp
and produces the output image outp. Applying this operation
allowed the missing pixels of the detected face regions to be
filled in. Thus, it made each face region appear as one
connected region.
 After each group of detected pixels became one connected
region, connected component labeling algorithm was applied.
This process labeled each connected region with a number,
allowing us to distinguish between different detected regions.
The built-in function bwlabel for this operation was available
in MATLAB. In general, there are two main methods to label
connected regions in a binary image, known as recursive and
sequential algorithms.The command regionprops can be used
to extract different properties, including area and centroid, of
each labeled region in the label matrix obtained from bwlabel.
 Filtering detected regions based on their areas would
successfully remove all background noise and any skin region
that was not likely to be a object. To be considered a object
region, a connected group of skin pixels need to have an area
of at least 26% of the largest area. This number was obtained
from experiments on training images. Therefore, many
regions of false positives could be removed in this stage, as
depicted in:
� object_idx = find(object_area > (.26)*max(object_area));
� object_shown = ismember(L, object_idx);
These two commands performed the following tasks:
o look for the connected regions whose areas were of 26%

of the largest area and store their corresponding indices in
face_idx;

o output the image face_shown that contained the connected
regions found.

The final stage was to determine object location.
 The centroid of each connected labeled object region can
be calculated by averaging the sum of X coordinates and Y
coordinates separately. The centroid of each object region is
denoted by the blue asterisk. Here the centroid of each
connected region was extracted using regionprops

III. DESIGN AND IMPLEMENTATION

 Each current video frame was captured by the camera and
sent to the FPGA’s decoder chip via a composite video cable
[3]. After the video signal was processed in different modules

in Verilog, the final output passed through the VGA driver to
be displayed on the VGA monitor.The hardware algorithm is
shown in Figure 3.

Figure 3 - Hardware Algorithm
� Thresholding is in this step, each input video frame
was converted to a “binary image” showing the segmented
raw result. Since 10-bit color was used in Verilog, adjusting
the aforementioned U range yields 40 < U < 296.
� Spatial Filtering is in this step was similar to the
erosion operation used in the software algorithm. However,
the structuring element used here did not have any particular
shape. Instead, for every pixel p, its neighboring pixels in a
9x9 neighborhood were checked. If more than 75% of its
neighbors were skin pixels, p was also a skin pixel. Otherwise
p was a non-skin pixel. This allowed most background noise
to be removed because usually noise scattered randomly
through space.
To examine the neighbors around a pixel, their values needed
to be stored. Therefore, ten shift registers were created to
buffer the values of ten consecutive rows in each frame. As
seen in Figure 4, each register was 640-bit long to hold the
binary values of 640 pixels in a row.

Figure 4 - Ten shift registers for ten consecutive rows

 Each bit in data_reg1 was updated according to the X
coordinate. For instance, when the X coordinate was 2,
data_reg1[2] was updated according to the result of
thresholding from the previous stage. Thus, data_reg1 was
updated every clock cycle. After all the bits of data_reg1 were
updated, its entire value was shifted to data_reg2. Thus, other
registers (from data_reg2 to data_reg10) were only updated
when the X coordinate was 0. Values of data_reg2 to
data_reg10 were used to examine a pixel’s neighborhood.
There was a trade-off between the number of shift registers
being used (i.e. the size of the neighborhood) and the
performance of the spatial filter. A larger neighborhood
required more registers to be used but, at the same time,
allowed more noise to be removed.
� Applying temporal filtering allowed flickering to be
reduced significantly. The idea of designing such a filter was
borrowed from the project “Real-Time Cartoonifier” [4]. Even
small changes in lighting could cause flickering and made the
result displayed on the VGA screen less stable. The temporal
filter was based on the following Verilog fragment:

// *** TEMPORAL FILTERING ***********************************//
IF ((VGA_X1 < AVGX_LPF + 10'D5) && (VGA_X1 > AVGX_LPF - 10'D5) &&

578

(VGA_Y1 < AVGY_LPF - 10'D5) && (VGA_Y1 > 10'D5))
BEGIN FLTR_REG <= FLTR_REG + FLTR3[0];
END
ELSE IF ((VGA_X1 == 10'D600) && (VGA_Y1 == 10'D400))
BEGIN FLTR_REG <= 16'D0;
END IF (FLTR_REG > 16'D50) BEGIN
IF (AVG2 > 10'B1110111111)
BEGIN // CAN ALSO TRY B1110110111
FLTR3 <= 10'H3FF;
FLTR3_R <= 10'H3FF;
FLTR3_G <= 10'H3FF;
FLTR3_B <= 10'H3FF
// DRAW CENTROID
IF (CNTR > 19'D500) BEGIN // THRESHOLD WHEN #PIXELS IS TOO SMALL, NOTHING WILL BE
DETECTED
IF (((VGA_X1 < AVGX_R2 + 10'D10) && (VGA_X1 > AVGX_R2 - 10'D10) &&
 (VGA_Y1 < AVGY_R2 + 10'D10) && (VGA_Y1 > AVGY_R2 - 10'D10)) ||
 ((VGA_X1 < AVGX_L2 + 10'D10) && (VGA_X1 > AVGX_L2 - 10'D10) &&
 (VGA_Y1 < AVGY_L2 + 10'D10) && (VGA_Y1 > AVGY_L2 - 10'D10))) BEGIN
FLTR3_R <= 10'H0;
FLTR3_G <= 10'H0;
FLTR3_B <= 10'H3FF;
…………………….
END
ELSE BEGIN
FLTR3 <= 10'H0;
FLTR3_R <= 10'H0;
FLTR3_G <= 10'H0;
FLTR3_B <= 10'H0;
IF (CNTR > 19'D500) BEGIN
IF (((VGA_X1 < AVGX_R2 + 10'D10) && (VGA_X1 > AVGX_R2 - 10'D10) &&
 (VGA_Y1 < AVGY_R2 + 10'D10) && (VGA_Y1 > AVGY_R2 - 10'D10)) ||
 ((VGA_X1 < AVGX_L2 + 10'D10) && (VGA_X1 > AVGX_L2 - 10'D10) &&
 (VGA_Y1 < AVGY_L2 + 10'D10) && (VGA_Y1 > AVGY_L2 - 10'D10))) BEGIN
FLTR3_R <= 10'H0;
FLTR3_G <= 10'H0;
FLTR3_B <= 10'H3FF;
……………………
END

 The filtered result of a pixel in this stage was determined
based on its average value avg_out. If its average value was
greater than 0.06 , becouse the number obtained from
experiments, the pixel was considered skin. Otherwise, the
pixel was non-skin. Experments of temporal filtering for a two
pixels is shown in Figure 5 and Figure 6, / blue is 1,orange is 0/.

Figure 5 Example of temporal filtering for a pixel p1

Figure 5 Example of temporal filtering for a pixel p2

� Centroid Computation, was computed to locate the
face region. Because connected component labeling was not
implemented as initially planned, it was infeasible to calculate
the centroid for each face region separately. This limited the
number of faces to be detected to two as maximum. First
assume that only one face was present. Therefore, its centroid
would just be the centroid of all detected pixels, as shown in
figure7. Note that this calculation would only be correct if
one face was present. Although the pixels of one face region
might not be connected and labeled as originally planned,
simply calculating the centroid of all detected pixels still gave
a good estimate for the face location. However, even if the
hands were present, calculating the centroid of all detected
pixels still allowed us to locate the face region.This was a
reasonable estimate because, compared to the face area, the
area of the hand/hands was much smaller. However, when
there were two faces present, calculating the centroid of all
detected pixels would only track the location between two
faces, rather than track each face separately. To separately
track each face in a two-person frame, additional steps were
required.

Figure 7 The FPGA results, when there was a moved man

 First the neighboring pixels around the centroid were
checked to see if they were skin pixels. If they were, it meant
the centroid accurately located the face region. However, if
the neighboring pixels of the centroid were not skin pixels, it
meant the centroid was somewhere in the background located
between two detected face regions. The Verilog fragment is:

//*** COMPUTING CENTROID FOR ALL DETECTED PIXELS **** //
IF ((VGA_X1 > 10'D20) && (VGA_X1 < 10'D620) &&
 (VGA_Y1 > 10'D20) && (VGA_Y1 < 10'D460)) BEGIN
IF (FLTR3 == 10'H3FF) BEGIN
SUMX <= SUMX + VGA_X1;
SUMY <= SUMY + VGA_Y1;
 CNTR <= CNTR + 19'B1;
END
END
IF ((VGA_X1 == 10'D2) && (VGA_Y1 == 10'D478)) BEGIN
AVGX <= SUMX / CNTR;
AVGY <= SUMY / CNTR;
AVGX_LPF <= AVGX_LPF - (AVGX_LPF >> 'D2) + (AVGX >> 'D2);
AVGY_LPF <= AVGY_LPF - (AVGY_LPF >> 'D2) + (AVGY >> 'D2);
SUMX <= 30'B0;
SUMY <= 30'B0;
CNTR <= 19'B0;
END
//***C OMPUTING CENTROID FOR LEFT HALVED FRAME ******//
IF ((VGA_X1 > 10'D20) && (VGA_X1 < AVGX_LPF - 10'D10) &&
 (VGA_Y1 > 10'D20) && (VGA_Y1 < 10'D460)) BEGIN
IF (FLTR3 == 10'H3FF) BEGIN
SUMX_L <= SUMX_L + VGA_X1;
SUMY_L <= SUMY_L + VGA_Y1;
CNTR_L <= CNTR_L + 19'B1;
END
END
IF ((VGA_X1 == 10'D20) && (VGA_Y1 == 10'D478)) BEGIN
AVGX_L <= SUMX_L / CNTR_L;
AVGY_L <= SUMY_L / CNTR_L;
AVGX_L2 <= AVGX_L2 - (AVGX_L2 >> 'D2) + (AVGX_L >> 'D2);
AVGY_L2 <= AVGY_L2 - (AVGY_L2 >> 'D2) + (AVGY_L >> 'D2);
SUMX_L <= 30'B0;
SUMY_L <= 30'B0;
CNTR_L <= 19'B0;
END
//*** COMPUTING CENTROID FOR RIGHT HALVED FRAME ****//
IF ((VGA_X1 > AVGX_LPF + 10'D10) && (VGA_X1 < 10'D620) &&
(VGA_Y1 > 10'D20) && (VGA_Y1 < 10'D460)) BEGIN
IF (FLTR3 == 10'H3FF) BEGIN
SUMX_R <= SUMX_R + VGA_X1;
SUMY_R <= SUMY_R + VGA_Y1;
CNTR_R <= CNTR_R + 19'B1;
END
END
IF ((VGA_X1 == 10'D621) && (VGA_Y1 == 10'D478)) BEGIN
AVGX_R <= SUMX_R / CNTR_R;
AVGY_R <= SUMY_R / CNTR_R;
AVGX_R2 <= AVGX_R2 - (AVGX_R2 >> 'D2) + (AVGX_R >> 'D2);
AVGY_R2 <= AVGY_R2 - (AVGY_R2 >> 'D2) + (AVGY_R >> 'D2);
SUMX_R <= 30'B0;
SUMY_R <= 30'B0;
CNTR_R <= 19'B0;
END

 Since area-based filtering was also not applied, other skin
regions—mostly the hands were not entirely removed.
However, even if the hands were present, calculating the
centroid of all detected pixels still allowed us to locate the
face region.This was a reasonable estimate because, compared
to the face area, the area of the hand/hands was much smaller.

579

However, when there were two objects present, calculating
the centroid of all detected pixels would only track the
location between two objects, rather than track each object
separately. To separately track each object in a two-object
frame, additional steps were required. First the neighboring
pixels around the centroid were checked to see if they were
colour object pixels. If they were, it meant the centroid
accurately located the object region. However, if the
neighboring pixels of the centroid were not object pixels, it
meant the centroid was somewhere in the background located
between two detected object regions. To solve this problem,
the video frame was split into two according to where the
centroid.

Figure 8 The FPGA results, when there was light effects

 To show how an object was tracked, a small box was
drawn around the centroid. The box moved according to the
movement of the object. However, if the object moved too
fast, the movement of the box might become less stable.
Applying temporal filtering here allowed the box to move
smoothly. The implementation of the temporal filter here was
slightly different from the one shown previously.

 Figure.9 The object tracking
 The input Xn here was the location of the centroid before
filtering. What this equation meant was, with α being close to
1, current output Yn would be more dependent on previous
output Yn-1 than on current input. This prevented the centroid
box from moving too fast when there was an abrupt change in
the movement of an object, as: Yn = (1 −α)Xn +αYn-1

A clock of 27 MHz was used for the face detection and
tracking algorithm. Since the timing was synchronized with
the VGA clock, the VGA display was able to update within
the time gap between drawing two consecutive frames [5].
The camera was able to detect and track objects in real time.
Error seemed to occur only when there was a transition from
one person to two people or vice versa in the video frame. The
figure10 shown bloks and the working hardware system.

Figure10 The bloks and the hardware system

 Within the lab setting, noise was very minimal and did
not alter the results. As long as a person was in the camera’s
view, his face would be accurately detected and tracked. His
distance relative to the camera did not affect the result. In the
presence of three or more people, the system could only detect
the faces but failed at tracking them.

III. CONCLUSION

The Image Processing Toolbox provided in MATLAB
allowed the process of developing and testing the algorithm to
be more efficient. Furthermore, verifying the accuracy of the
detection algorithm on still pictures provided fair results.
Object detection and tracking is the process of determining
whether or not present it in an image. Unlike face recognition,
which distinguishes different human faces, face detection only
indicates whether or not an object is present in an image.
Object detection and tracking has been an active research area
for a long time because it is the initial important step in many
different applications, such as video surveillance, face
recognition, image enhancement, video coding, and energy
conservation.

REFERENCES

[1] Furi A., Hang H.M., An efficient block-matching
algorithm for motion compensated coding, Proc. JSASSP,
pp.1063-1066, 2007.

[2] Xyaнгa М. Обработка изображении и цифровая
фильтрация,Под ред. Т:Мир 2009.

[3] Diaz J., E. Ros, F. Pelayo, “Fpga-based real-time
optical-flow system,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 16, Feb. 2006

[4] Advanced Microcontroller Final Projects, or online at:
http://people.ece.cornell.edu/land/courses/ece5760/FinalProj
ects

[5] Jentz B, J. Rotem, Leveraging. FPGA coprocessors to
optimize high-performance digital video surveillance
systems. www.dsp-fpga.com/articles/jentz_and_rotem

580

