

Approaches for Texture Image Creation
Daniela Ilieva

1

Abstract –This article discusses two ways to create texture

images - procedural (texture generation) and texture synthesis.

The procedural approach is used to create images of natural

phenomena such as terrain, fire, clouds, water, fog, vegetation

for the purposes of computer graphics. Texture synthesis is

applied when analyzing a small digital image we receive a larger

one without visible repetitions and boundaries. The results of the

generation and synthesis of the textures are applied.

Keywords – Texture image, Texture generation, Texture

synthesis

I. INTRODUCTION

An image texture is a set of metrics calculated in image

processing designed to quantify the perceived texture of an

image. Image texture gives us information about the spatial

arrangement of color or intensities in an image or selected

region of an image.

In 3D computer graphics, a texture is a digital image

applied to the surface of a three-dimensional model by texture

mapping to give the model a more realistic appearance.

In image processing, every digital image composed of

repeated elements is called a "texture”.

Texture can be arranged along a spectrum going from

stochastic to regular.

Image textures can be artificially created or found in natural

scenes captured in an image. Image textures are one way that

can be used to help in segmentation or classification of

images. To analyze an image texture in computer graphics,

there are two ways to approach the issue: Structured Approach

and Statistical Approach.

The image texture can be a photograph of a "real" texture or

can be created by a procedural order.

II.PROCEDURAL TEXTURE GENERATION

 Procedural techniques [1], [2] are code segments or

algorithms that specify some characteristic of a computer-

generated model or effect. Procedural texture does not use a

scanned-in image to define the color values. Instead, it uses

algorithms and mathematical functions to determine the color.

 One of the most important features of procedural

techniques is abstraction. In a procedural approach, rather

than explicitly specifying and storing all the complex details

of a scene or sequence, we abstract them into a procedure and

evaluate that procedure when and where needed. This allows

us to create inherent multiresolution models and textures that

we can evaluate to the resolution needed.

 We also gain the power of parametric control, allowing us

to assign to a parameter a meaningful concept (e.g., a number

that makes mountains rougher or smoother). This parametric

control unburdens the user from the lowlevel control and

specification of detail.

 Procedural models also offer flexibility. Procedural

techniques allow the inclusion in the model of any desired

amount of physical accuracy. The designer may produce a

wide range of effects, from accurately simulating natural laws

to purely artistic effects.

 One major defining characteristic of a procedural texture is

that it is synthetic - generated from a program or model rather

than just a digitized or painted image.

 The advantages of a procedural texture over an image

texture are as follows:

 • A procedural representation is extremely compact. The

size of a procedural texture is usually measured in kilobytes,

while the size of a texture image is usually measured in

megabytes. This is especially true for solid textures, since 3D

texture images are extremely large. Nonetheless, some people

have used tomographic X-ray scanners to obtain digitized

volume images for use as solid textures.

 • A procedural representation has no fixed resolution. In

most cases it can provide a fully detailed texture no matter

how closely you look at it (no matter how high the resolution).

 • A procedural representation covers no fixed area. In other

words, it is unlimited in extent and can cover an arbitrarily

large area without seams and without unwanted repetition of

the texture pattern.

 • A procedural texture can be parameterized, so it can

generate a class of related textures rather than being limited to

one fixed texture image.

 The disadvantages of a procedural texture as compared to

an image texure are as follows:

 • A procedural texture can be difficult to build and debug.

Programming is often hard, and programming an implicit

pattern description is especially hard in nontrivial cases.

 • Evaluating a procedural texture can be slower than

accessing a stored texture image. This is the classic time

versus space trade-off.

 • Aliasing can be a problem in procedural textures.

Antialiasing can be tricky and is less likely to be taken care of

automatically than it is in image-based texturing.

 To generate irregular procedural textures, we need an

irregular primitive function, usually called noise. This is a

function that is apparently stochastic and will break up the

monotony of patterns that would otherwise be too regular.

 The obvious stochastic texture primitive is white noise, a

source of random numbers, uniformly distributed with no

correlation whatsoever between successive numbers.

 Procedural texturing uses fractal noise extensively. The

noise function simply computes a single value for every

1Daniela Ilieva is with the Department of Computer Science &

Engineering at Technical University of Varna, 1 Studentska str.,

Varna 9009, Bulgaria, E-mail: ilievadaniela@mail.bg.

585

location in space. We can then use that value in literally

thousands of interesting ways, such as perturbing an existing

pattern spatially, mapping directly to a density or color, taking

its derivative for bump mapping, or adding multiple scales of

noise to make a fractal version. While there are infinitely

many functions that can be computed from an input location,

noise’s random (but controlled) behavior gives a much more

interesting appearance than simple gradients or mixtures of

sines.

 Below are shown the images (fig,1) procedurally

generated with midpoint displacement procedure that can be

used in terrain scenes, scenes with landscapes, clouds and

meadows. The images (a) are created by a procedure and then

the intensity of each point is used as a height for receiving 3D

terrain (b). The images (c) are created with different color

scheme and control parameter.

(a)

(b)

(c)

Fig.(1). Generated texture images by generalized stochastic

subdivision (midpoint displacement procedure)

III.TEXTURE SYNTHESIS

The texture synthesis problem may be stated as follows:

Given an input sample texture, synthesize a texture that is

sufficiently different from the given sample texture, yet

appears perceptually to be generated by the same underlying

stochastic process.

 Texture synthesis algorithms are intended to create an

output image that meets the following requirements:

- The output should have the size given by the user.

- The output should be as similar as possible to the

sample.

- The output should not have visible artifacts such as

seams, blocks and misfitting edges.

- The output should not repeat, i. e. the same structures in

the output image should not appear multiple places.

Like ithe most algorithms, texture synthesis should be

efficient in computation time and in memory use.

Pyramid-Based Texture Synthesis

Pyramid-based texture synthesis [Heeger and Bergen] [3] is

a very first `fast' algorithm that generates a new texture by

matching certain statistics with the training sample. In the

method, a texture is decomposed into pyramid-based

representations, i.e. an analysis and a synthesis pyramids are

constructed from the training and the output textures

respectively.

Multi-resolution Sampling

Multi-resolution sampling [4], proposed by DeBonet, also

constructs an analysis and a synthesis Guassian/Laplacian

pyramids in texture synthesis. But it has two major

improvements over the previous method. First, multi-

resolution sampling extracts a set of more detailed and

sophisticated image features by applying a filter bank onto

each pyramid level. Second, multi-resolution sampling

explicitly takes the joint occurrence of texture features across

multiple pyramid levels into account, while the previous

method processes each pyramid level separately.

Pixel-based Non-parametric Sampling

Pixel-based non-parametric sampling [5], [6], [7],

constrains pixel sampling using a similarity metric defined

with respect to a local neighbourhood system in an MRF

(fig.2).

Fig.2. The `L'-shaped neighbourhood in a pixel-based non-

parametric sampling (a 3X3 neighbourhood window in this

case). Each square represents a pixel and the arrows indicate

the synthesis is performed in a raster scanline order.

The method assumes an MGRF model of textures so that a

pixel gi only depends on the pixels in a local

586

neighbourhood gN

i
 . The distance between

neighbourhoods
i

N and
j

N , e.g., the sum-of-square-

difference (SSD), provides a metric of pixel similarity

between i and j . To synthesise a pixel i , the algorithm

searches for a pixel j from the training texture that

minimises the distance between
i

N and
j

N , and then uses

the value of pixel j for pixel i .

 Block Sampling

 Block sampling [8] is a natural extension to the previous

pixel-based methods, which improves time efficiency of the

synthesis by using image blocks as basic synthesis units. So,

instead of pixel by pixel, block sampling synthesises a texture

on a block by block basis (fig.3).

(a) (b)

Fig. 3: Patch-based non-parametric sampling: (a) The

boundary zones in a new and a already synthesised patches.

(b) The overlapping boundary zones after a new patch is

placed into the output texture. The arrows indicate the

synthesis is performed in a scanline order.

 Image Quilting

 Image quilting [9,10] improves the patch-based non-

parametric sampling by developing a more sophisticated

technique to handle the boundary conditions between

overlapped image patches. Instead of using the oversimplified

blending technique, image quilting exploits a minimum error

boundary cut to find an optimal boundary between two

patches. An optimal cut defines an irregular path separating

overlapping patches, so that each patch provides the synthetic

texture only image signals on its side of the path.

 Results of our algorithm based on block sampling

procedure with image quilting (Fig. 4):

Step 1. Define patch that will be filled from the input

image. It will be synthesized in step M

Step 2. Create a "neighbor" - an image formed around a

patch.

 Step 3. Detecting matching "neighbors"

Step 4. Selecting the best of all "neighbors”

Step 5. Copy selected "neighbor" and patch of the original

image.

Step 6. Implement a strategy to remove the gap

Step 7. Forming of the patch from step N

Step M. Synthesis the whole texture image

Fig.4. Algorithm for texture image synthesis

587

 Finding an optimal neighbor.

 Algorithm to search for optimal "patch" is based on the

following steps:

 - Forming of piece with all-black color (Fig.5)

 - Forming of mask image Ji

Fig.5. Algorithm to search optimal "patch"

- Calculate (Eq.1) the error Ei (x0) between Ii and T (boot

image) for each displacement x0 = (x, y) of the input

texture T (Fig.6)

 (1)

 Т Ei

Fig.6. Determination of the error image

- Determination of error overlap of Si mask image Ii

(Eq.2) and Pi selected piece (Fig.7).

(2)

Fig.7. Determination of error overlap Si

 - When found the patch with a Si = min to copy selected

patch in the i-th image area.

 The algorithm is repeated until all texture image is

created.

Developed application is shown in Fig. 8.

Fig.8. Texture synthesis application

I. IV. CONCLUSION

The results obtained are with satisfactory appearance and

speed of preparation and can be used for computer graphics

and visualization.

REFERENCES

[1] D. Ebert, K. Musgrave, D. Peachey, K. Perlin, S. Worley

“Texturing and modeling. A procedural approach. Third edition.

Morgan Kaufman Publishers. 2003. ISBN: 1–55860–848–6

[2] P. Schneider, D. Eberly "Geometric Tools for Computer

Graphics". Third edition. Morgan Kaufman Publishers. 2002.

[3] D. J. Heeger and J R. Bergen. Pyramid-based texture

analysis/synthesis. In SIGGRAPH, pages 229-238, 1995.

[4] J. S. DeBonet. Multiresolution sampling procedure for

analysis and synthesis of texture images. Computer Graphics,

31(Annual Conference Series):361-368, 1997.

[5] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In ICCV (2), pages 1033-1038, 1999.

[6] L. Wei and M. Levoy. Fast texture synthesis using tree-

structured vector quantization. In K. Akeley, editor, Siggraph 2000,

Computer Graphics Proceedings, pages 479-488. ACM Press / ACM

SIGGRAPH / Addison Wesley Longman, 2000.

[7] M. Ashikhmin. Synthesizing natural textures. In The

proceedings of 2001 ACM Symposium on Interactive 3D Graphics,

pages 217-226, 2001.

[8] L. Liang, C. Liu, and H. Y. Shum. Real-time texture synthesis

by patch-based sampling. Technical Report MSR-TR-2001-40,

Microsoft Research, 2001.

[9] A. A. Efros and W. T. Freeman. Image quilting for texture

synthesis and transfer. In Eugene Fiume, editor, SIGGRAPH 2001,

Computer Graphics Proceedings, pages 341-346. ACM Press / ACM

SIGGRAPH, 2001.

[10] D. Zhou and G. L. Gimel'farb. Texel-based texture analysis

and synthesis. In Proc. Image and Vision Computing New Zealand

(IVCNZ 2004), Akaroa, New Zealand, pages 215-220, November

2004.

588

