

Use of genetic algorithms for optimal design of electrical
resistive furnaces insulation

Hristo Nenov1 and Borislav Dimitrov2

Abstract – The using of genetic algorithms approach for design
of chamber resistive furnaces (CRF) insulation is presented in
this paper. The solution of the specified optimization problem
and finding the optimal parameters are the basic precondition
for increasing the efficiency of resistance furnaces.

Keywords – genetic algorithms, optimization, electrical
resistive furnaces.

I. INTRODUCTION

Electric resistance furnace chambers (EFC) are designed for
heat treatment of steel parts - annealing, normalization and
more. They are powerful consumers of electricity, which is
why the problems related to improving the energy
effectiveness are particularly relevant. The analysis of the
processes run in the chamber resistance furnaces using model
and numerical methods gives significant opportunities for
optimization when setting different target functions. Proper
results are achieved by working with detailed models, whose
parameters correspond to maximum facility.

II. ANALYSIS

A. Genetic algorithm

The genetic algorithm is a method for solving both
constrained and unconstrained optimization problems that is
based on natural selection, the process that drives biological
evolution. The genetic algorithm repeatedly modifies a
population of individual solutions. At each step, the genetic
algorithm selects individuals at random from the current
population to be parents and uses them to produce the children
for the next generation. Over successive generations, the
population "evolves" toward an optimal solution. You can
apply the genetic algorithm to solve a variety of optimization
problems that are not well suited for standard optimization
algorithms, including problems in which the objective
function is discontinuous, nondifferentiable, stochastic, or
highly nonlinear. The genetic algorithm can address problems
of mixed integer programming, where some components are
restricted to be integer-valued.

The genetic algorithm uses three main types of rules at each
step to create the next generation from the current population:

• Selection rules select the individuals, called parents
that contribute to the population at the next
generation.

• Crossover rules combine two parents to form
children for the next generation.

• Mutation rules apply random changes to individual
parents to form children.

The genetic algorithm differs from a classical, derivative-

based, optimization algorithm in two main ways, as
summarized in the following table.(Table 1).

TABLE I
ALGORITHM COMPARE

Classical Algorithm Genetic Algorithm
Generates a single point
at each iteration. The
sequence of points
approaches an optimal
solution.

Generates a population
of points at each
iteration. The best point
in the population
approaches an optimal
solution.

Selects the next point in
the sequence by a
deterministic
computation.

Selects the next
population by
computation which uses
random number
generators.

B. Genetic Algorithm Terminology

Fitness Functions

The fitness function is the function you want to optimize.
For standard optimization algorithms, this is known as the
objective function. The toolbox software tries to find the
minimum of the fitness function.

Write the fitness function as a file or anonymous function,

and pass it as a function handle input argument to the main
genetic algorithm function.

Individuals
An individual is any point to which you can apply the

fitness function. The value of the fitness function for an
individual is its score.

Populations and Generations
A population is an array of individuals. For example, if the

size of the population is 100 and the number of variables in

1eng. Hristo Nenov, Ph.D– Technical University of Varna,
Bulgaria, assistant professor. E-mail – ico762001@gmail.com

2eng. Borislav Dimitrov, Ph.D– Technical University of Varna,
Bulgaria, associated professor.

E-mail – bdimitrov@processmodeling.org.

615

the fitness function is 3, the population is represented by a
100-by-3 matrix. The same individual can appear more than
once in the population. For example, the individual (2, -3, 1)
can appear in more than one row of the array.

At each iteration, the genetic algorithm performs a series of
computations on the current population to produce a new
population. Each successive population is called a new
generation.

Diversity

Diversity refers to the average distance between individuals
in a population. A population has high diversity if the average
distance is large; otherwise it has low diversity. In the
following figure, the population on the left has high diversity,
while the population on the right has low diversity.

Fig.1. Diversity example

Diversity is essential to the genetic algorithm because it

enables the algorithm to search a larger region of the space.

Fitness Values and Best Fitness Values

The fitness value of an individual is the value of the fitness
function for that individual. Because the toolbox software
finds the minimum of the fitness function, the best fitness
value for a population is the smallest fitness value for any
individual in the population.

Parents and Children

To create the next generation, the genetic algorithm selects
certain individuals in the current population, called parents,
and uses them to create individuals in the next generation,
called children. Typically, the algorithm is more likely to
select parents that have better fitness values.

C. How it works

1. The algorithm begins by creating a random initial
population.

2. The algorithm then creates a sequence of new
populations. At each step, the algorithm uses the
individuals in the current generation to create the
next population. To create the new population, the
algorithm performs the following steps:

a. Scores each member of the current population
by computing its fitness value.

b. Scales the raw fitness scores to convert them

into a more usable range of values.

c. Selects members, called parents, based on their
fitness.

d. Some of the individuals in the current population

that have lower fitness are chosen as elite. These
elite individuals are passed to the next
population.

e. Produces children from the parents. Children are

produced either by making random changes to a
single parent—mutation—or by combining the
vector entries of a pair of parents—crossover.

3. Replaces the current population with the children to

form the next generation.
Creating the Next Generation

At each step, the genetic algorithm uses the current

population to create the children that make up the next
generation. The algorithm selects a group of individuals in the
current population, called parents, who contribute their
genes—the entries of their vectors—to their children. The
algorithm usually selects individuals that have better fitness
values as parents. You can specify the function that the
algorithm uses to select the parents in the Selection function
field in the Selection options.

The genetic algorithm creates three types of children for the

next generation:
 Elite children are the individuals in the current

generation with the best fitness values. These individuals
automatically survive to the next generation.

 Crossover children are created by combining the vectors
of a pair of parents.

 Mutation children are created by introducing random
changes, or mutations, to a single parent.

Fig.2. Children types

The algorithm stops when one of the stopping criteria is
met.

616

Crossover Children

The algorithm creates crossover children by combining
pairs of parents in the current population. At each coordinate
of the child vector, the default crossover function randomly
selects an entry, or gene, at the same coordinate from one of
the two parents and assigns it to the child. For problems with
linear constraints, the default crossover function creates the
child as a random weighted average of the parents.

Mutation Children

The algorithm creates mutation children by randomly
changing the genes of individual parents. By default, for
unconstrained problems the algorithm adds a random vector
from a Gaussian distribution to the parent. For bounded or
linearly constrained problems, the child remains feasible.

Fig.3. Children types

Stopping Conditions for the Algorithm

The genetic algorithm uses the following conditions to

determine when to stop:
• Generations — the algorithm stops when the number

of generations reaches the value of Generations.
• Time limit — the algorithm stops after running for an

amount of time in seconds equal to Time limit.
• Fitness limit — the algorithm stops when the value

of the fitness function for the best point in the
current population is less than or equal to Fitness
limit.

• Stall generations — the algorithm stops when the
weighted average change in the fitness function
value over Stall generations is less than Function
tolerance.

• Stall time limit — the algorithm stops if there is no
improvement in the objective function during an
interval of time in seconds equal to Stall time
limit.

• Function Tolerance — the algorithm runs until the
weighted average relative change in the fitness
function value over Stall generations is less than
Function tolerance. The weighting function is

1/2n, where n is the number of generations prior to
the current.

• Nonlinear constraint tolerance — The Nonlinear
constraint tolerance is not used as stopping
criterion. It is used to determine the feasibility
with respect to nonlinear constraints. Also, a point
is feasible with respect to linear constraints when
the constraint violation is below the square root of
Nonlinear constraint tolerance.

Reproduction Options

Reproduction options control how the genetic algorithm

creates the next generation. The options are

 Elite count — the number of individuals with the best
fitness values in the current generation that are guaranteed to
survive to the next generation. These individuals are called
elite children. The default value of Elite count is 2.

 When Elite count is at least 1, the best fitness value can
only decrease from one generation to the next. This is what
you want to happen, since the genetic algorithm minimizes the
fitness function. Setting Elite count to a high value causes the
fittest individuals to dominate the population, which can make
the search less effective.

 Crossover fraction — the fraction of individuals in the
next generation, other than elite children, that are created by
crossover. Setting the Crossover Fraction describes how the
value of Crossover fraction affects the performance of the
genetic algorithm.

Mutation and Crossover

The genetic algorithm uses the individuals in the current
generation to create the children that make up the next
generation. Besides elite children, which correspond to the
individuals in the current generation with the best fitness
values, the algorithm creates

 Crossover children by selecting vector entries, or genes,
from a pair of individuals in the current generation and
combine them to form a child

 Mutation children by applying random changes to a
single individual in the current generation to create a child

Both processes are essential to the genetic algorithm.
Crossover enables the algorithm to extract the best genes from
different individuals and recombine them into potentially
superior children. Mutation adds to the diversity of a
population and thereby increases the likelihood that the
algorithm will generate individuals with better fitness values.

Some of the advantages of a GA include that it
• Optimizes with continuous or discrete variables;
• Doesn’t require derivative information;
• Simultaneously searches from a wide sampling of the cost

surface;
• Deals with a large number of variables;
• Is well suited for parallel computers;
• Optimizes variables with extremely complex cost surfaces

(they can jump out of a local minimum);
• Provides a list of optimum variables, not just a single

solution;

617

• May encode the variables so that the optimization is done
with the encoded variables, and

• Works with numerically generated data, experimental
data, or analytical functions.

These advantages are intriguing and produce stunning
results when traditional optimization approaches fail
miserably.

D. Optimisation of chamber resistive furnaces (CRF)
insulation

The main factor determining the energy performance of
CRF is the loss. The realization of the assigned tasks is
reduced to: define minimum losses - for stationary furnaces
operating in continuous mode (industrial, large-sized furnace,
etc.); define minimum size and weight - use the CRF if
necessary with incidentals – furnace that are non-essential
facilities and are required to take minimum space, mobile
furnace mounted on a platform, laboratory ones, etc.

The object of research is a CRF. As a target function to
solve the optimization problem is set minimization of heat
losses.

The parameters involved in the mathematical model that
describes the heat losses of the furnace are:

• number of layers
 fire resistant layer size/weight
 insulation layer size/weight
 thickness of the layers

• rated temperature
• productivity
• voltage
• specific heat capacity
• thermal conductivity
• density
• degree of blackness
• size of the walls.

As restrictive conditions are determined the range of
variation of the material specific heat, size of the walls and
thickness of the insulating layers.

On the fig.4 is shown the situation before the process of
optimization

Fig.4. infra-red thermo picture of CRF before optimization
(manhole chamber)

 The figure clearly shows that the resulting
temperature of the outer shell (≅ 160 C°) of the furnace is
unacceptable to the conditions of work of this type of facility.

The optimization process, correct the values of the different
parameters of the CRF, and after changes to the technical
characteristics of the furnace, the following results were
achieved (Fig.5).

Fig.4. infra-red thermo picture of CRF after optimization
(manhole chamber)

It is clear from the figure that after optimization, the

maximum temperature which is obtained in the furnace
housing is now only 57 C°.

III. CONCLUSION

Genetic algorithms are a powerful tool for solving
optimization problems with many variables and complex
calculations. In some cases, they have an advantage over
traditional (calculus-based) optimization methods. Their uses
help the improvement of mathematical models describing the
various furnaces and solve some specific problems in the
operation of this type of systems.

ACKNOWLEDGEMENT

This paper is developed in the frames of project “Improving
energy efficiency and optimization of electro technological processes
and devices”, № МУ03/163 financed by the National Science Fund.

REFERENCES
[1] P. Watson, K. C. Gupta, “EM-ANN Models for Microstrip Vias

and Interconnects”, IEEE Trans., Microwave Theory Tech., vol.
44, no. 12, pp. 2395-2503, 1996.

[2] B. Milovanovic, Z. Stankovic, S. Ivkovic and V. Stankovic,
"Loaded Cylindrical Metallic Cavities Modeling using Neural
Networks", TELSIKS'99, Conference Proceedings, pp.214-217,
Nis, Yugoslavia, 1999.

[3] S. Haykin, Neural Networks, New York, IEEE Press, 1994.

618

