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Abstract – The using of genetic algorithms approach for design 
of chamber resistive furnaces (CRF) insulation is presented in 
this paper. The solution of the specified optimization problem 
and finding the optimal parameters are the basic precondition 
for increasing the efficiency of resistance furnaces.  
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I. INTRODUCTION 

Electric resistance furnace chambers (EFC) are designed for 
heat treatment of steel parts - annealing, normalization and 
more. They are powerful consumers of electricity, which is 
why the problems related to improving the energy 
effectiveness are particularly relevant. The analysis of the 
processes run in the chamber resistance furnaces using model 
and numerical methods gives significant opportunities for 
optimization when setting different target functions. Proper 
results are achieved by working with detailed models, whose 
parameters correspond to maximum facility.   

II. ANALYSIS  

A. Genetic algorithm 

The genetic algorithm is a method for solving both 
constrained and unconstrained optimization problems that is 
based on natural selection, the process that drives biological 
evolution. The genetic algorithm repeatedly modifies a 
population of individual solutions. At each step, the genetic 
algorithm selects individuals at random from the current 
population to be parents and uses them to produce the children 
for the next generation. Over successive generations, the 
population "evolves" toward an optimal solution. You can 
apply the genetic algorithm to solve a variety of optimization 
problems that are not well suited for standard optimization 
algorithms, including problems in which the objective 
function is discontinuous, nondifferentiable, stochastic, or 
highly nonlinear. The genetic algorithm can address problems 
of mixed integer programming, where some components are 
restricted to be integer-valued. 

 

The genetic algorithm uses three main types of rules at each 
step to create the next generation from the current population: 

• Selection rules select the individuals, called parents 
that contribute to the population at the next 
generation. 

• Crossover rules combine two parents to form 
children for the next generation. 

• Mutation rules apply random changes to individual 
parents to form children. 

 
The genetic algorithm differs from a classical, derivative-

based, optimization algorithm in two main ways, as 
summarized in the following table.( Table 1). 

TABLE I 
ALGORITHM COMPARE 

Classical Algorithm Genetic Algorithm 
Generates a single point 
at each iteration. The 
sequence of points 
approaches an optimal 
solution. 

Generates a population 
of points at each 
iteration. The best point 
in the population 
approaches an optimal 
solution. 

Selects the next point in 
the sequence by a 
deterministic 
computation. 

Selects the next 
population by 
computation which uses 
random number 
generators. 

 

B. Genetic Algorithm Terminology 

Fitness Functions 

The fitness function is the function you want to optimize. 
For standard optimization algorithms, this is known as the 
objective function. The toolbox software tries to find the 
minimum of the fitness function. 

 
Write the fitness function as a file or anonymous function, 

and pass it as a function handle input argument to the main 
genetic algorithm function. 

Individuals 
An individual is any point to which you can apply the 

fitness function. The value of the fitness function for an 
individual is its score. 

Populations and Generations 
A population is an array of individuals. For example, if the 

size of the population is 100 and the number of variables in 
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the fitness function is 3, the population is represented by a 
100-by-3 matrix. The same individual can appear more than 
once in the population. For example, the individual (2, -3, 1) 
can appear in more than one row of the array. 

At each iteration, the genetic algorithm performs a series of 
computations on the current population to produce a new 
population. Each successive population is called a new 
generation. 

Diversity 

Diversity refers to the average distance between individuals 
in a population. A population has high diversity if the average 
distance is large; otherwise it has low diversity. In the 
following figure, the population on the left has high diversity, 
while the population on the right has low diversity. 

 

 
Fig.1. Diversity example 

 
Diversity is essential to the genetic algorithm because it 

enables the algorithm to search a larger region of the space. 

Fitness Values and Best Fitness Values 

The fitness value of an individual is the value of the fitness 
function for that individual. Because the toolbox software 
finds the minimum of the fitness function, the best fitness 
value for a population is the smallest fitness value for any 
individual in the population. 

Parents and Children 

To create the next generation, the genetic algorithm selects 
certain individuals in the current population, called parents, 
and uses them to create individuals in the next generation, 
called children. Typically, the algorithm is more likely to 
select parents that have better fitness values. 

C. How it works 

1. The algorithm begins by creating a random initial 
population.  

2. The algorithm then creates a sequence of new 
populations. At each step, the algorithm uses the 
individuals in the current generation to create the 
next population. To create the new population, the 
algorithm performs the following steps: 

 

a. Scores each member of the current population 
by computing its fitness value. 

 
b. Scales the raw fitness scores to convert them 

into a more usable range of values. 
 

c. Selects members, called parents, based on their 
fitness. 

 
d. Some of the individuals in the current population 

that have lower fitness are chosen as elite. These 
elite individuals are passed to the next 
population. 

 
e. Produces children from the parents. Children are 

produced either by making random changes to a 
single parent—mutation—or by combining the 
vector entries of a pair of parents—crossover. 

 
3. Replaces the current population with the children to 

form the next generation. 
Creating the Next Generation 
 
At each step, the genetic algorithm uses the current 

population to create the children that make up the next 
generation. The algorithm selects a group of individuals in the 
current population, called parents, who contribute their 
genes—the entries of their vectors—to their children. The 
algorithm usually selects individuals that have better fitness 
values as parents. You can specify the function that the 
algorithm uses to select the parents in the Selection function 
field in the Selection options. 

 
The genetic algorithm creates three types of children for the 

next generation: 
    Elite children are the individuals in the current 

generation with the best fitness values. These individuals 
automatically survive to the next generation. 

    Crossover children are created by combining the vectors 
of a pair of parents. 

    Mutation children are created by introducing random 
changes, or mutations, to a single parent. 

     

 
Fig.2. Children types 

The algorithm stops when one of the stopping criteria is 
met. 
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Crossover Children 

The algorithm creates crossover children by combining 
pairs of parents in the current population. At each coordinate 
of the child vector, the default crossover function randomly 
selects an entry, or gene, at the same coordinate from one of 
the two parents and assigns it to the child. For problems with 
linear constraints, the default crossover function creates the 
child as a random weighted average of the parents. 

Mutation Children 

The algorithm creates mutation children by randomly 
changing the genes of individual parents. By default, for 
unconstrained problems the algorithm adds a random vector 
from a Gaussian distribution to the parent. For bounded or 
linearly constrained problems, the child remains feasible. 

 

 
Fig.3. Children types 

 
Stopping Conditions for the Algorithm 
 
The genetic algorithm uses the following conditions to 

determine when to stop: 
• Generations — the algorithm stops when the number 

of generations reaches the value of Generations. 
• Time limit — the algorithm stops after running for an 

amount of time in seconds equal to Time limit. 
• Fitness limit — the algorithm stops when the value 

of the fitness function for the best point in the 
current population is less than or equal to Fitness 
limit. 

• Stall generations — the algorithm stops when the 
weighted average change in the fitness function 
value over Stall generations is less than Function 
tolerance. 

• Stall time limit — the algorithm stops if there is no 
improvement in the objective function during an 
interval of time in seconds equal to Stall time 
limit. 

• Function Tolerance — the algorithm runs until the 
weighted average relative change in the fitness 
function value over Stall generations is less than 
Function tolerance. The weighting function is 

1/2n, where n is the number of generations prior to 
the current. 

• Nonlinear constraint tolerance — The Nonlinear 
constraint tolerance is not used as stopping 
criterion. It is used to determine the feasibility 
with respect to nonlinear constraints. Also, a point 
is feasible with respect to linear constraints when 
the constraint violation is below the square root of 
Nonlinear constraint tolerance. 

Reproduction Options 
 
Reproduction options control how the genetic algorithm 

creates the next generation. The options are 

    Elite count — the number of individuals with the best 
fitness values in the current generation that are guaranteed to 
survive to the next generation. These individuals are called 
elite children. The default value of Elite count is 2. 

    When Elite count is at least 1, the best fitness value can 
only decrease from one generation to the next. This is what 
you want to happen, since the genetic algorithm minimizes the 
fitness function. Setting Elite count to a high value causes the 
fittest individuals to dominate the population, which can make 
the search less effective. 

    Crossover fraction — the fraction of individuals in the 
next generation, other than elite children, that are created by 
crossover. Setting the Crossover Fraction describes how the 
value of Crossover fraction affects the performance of the 
genetic algorithm. 

Mutation and Crossover 

The genetic algorithm uses the individuals in the current 
generation to create the children that make up the next 
generation. Besides elite children, which correspond to the 
individuals in the current generation with the best fitness 
values, the algorithm creates 

    Crossover children by selecting vector entries, or genes, 
from a pair of individuals in the current generation and 
combine them to form a child 

    Mutation children by applying random changes to a 
single individual in the current generation to create a child 

Both processes are essential to the genetic algorithm. 
Crossover enables the algorithm to extract the best genes from 
different individuals and recombine them into potentially 
superior children. Mutation adds to the diversity of a 
population and thereby increases the likelihood that the 
algorithm will generate individuals with better fitness values. 

Some of the advantages of a GA include that it 
• Optimizes with continuous or discrete variables; 
• Doesn’t require derivative information; 
• Simultaneously searches from a wide sampling of the cost 

surface; 
• Deals with a large number of variables; 
• Is well suited for parallel computers; 
• Optimizes variables with extremely complex cost surfaces 

(they can jump out of a local minimum); 
• Provides a list of optimum variables, not just a single 

solution; 
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• May encode the variables so that the optimization is done 
with the encoded variables, and 

• Works with numerically generated data, experimental 
data, or analytical functions. 

These advantages are intriguing and produce stunning 
results when traditional optimization approaches fail 
miserably. 

 
D. Optimisation of chamber resistive furnaces (CRF) 
insulation 

The main factor determining the energy performance of 
CRF is the loss. The realization of the assigned tasks is 
reduced to: define minimum losses - for stationary furnaces 
operating in continuous mode (industrial, large-sized furnace, 
etc.); define minimum size and weight - use the CRF if 
necessary with incidentals – furnace that are non-essential 
facilities and are required to take minimum space, mobile  
furnace mounted on a platform, laboratory ones, etc. 

The object of research is a CRF. As a target function to 
solve the optimization problem is set minimization of heat 
losses.  

The parameters involved in the mathematical model that 
describes the heat losses of the furnace are:  

• number of layers 
 fire resistant layer size/weight 
 insulation layer size/weight 
 thickness of the layers 

• rated temperature  
• productivity  
• voltage  
• specific heat capacity 
• thermal conductivity  
• density  
• degree of blackness  
• size of the walls. 

As restrictive conditions are determined the range of 
variation of the material specific heat, size of the walls and 
thickness of the insulating layers.  

On the fig.4 is shown the situation before the process of 
optimization 

 
 

Fig.4. infra-red thermo picture of CRF before optimization 
(manhole chamber) 

 The figure clearly shows that the resulting 
temperature of the outer shell (≅ 160 C°) of the furnace is 
unacceptable to the conditions of work of this type of facility. 

The optimization process, correct the values of the different 
parameters of the CRF, and after changes to the technical 
characteristics of the furnace, the following results were 
achieved (Fig.5). 

 

 
 

Fig.4. infra-red thermo picture of CRF after optimization 
(manhole chamber) 

 
It is clear from the figure that after optimization, the 

maximum temperature which is obtained in the furnace 
housing is now only 57 C°. 

III. CONCLUSION 

Genetic algorithms are a powerful tool for solving 
optimization problems with many variables and complex 
calculations. In some cases, they have an advantage over 
traditional (calculus-based) optimization methods. Their uses 
help the improvement of mathematical models describing the 
various furnaces and solve some specific problems in the 
operation of this type of systems. 
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