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Abstract – In this writing are studied the options for 
application of Artificial Neural Networks (ANN) in dynamic 
processes modelling, and mainly in identification and modelling 
of cases that conventionally are expressed with differential 
(difference) equations. Special attention has been paid to models 
identification that is further transformed into ANN training to 
experimental results of the actual physical model. 
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I. INTRODUCTION 

In A basic approach in designing automation systems is the 
modelling of separate elements and/or the entire structure of 
the signal network for process values control. The end results 
of automation greatly depend on the type and quality of the 
models employed. The engineering of models that are relevant 
to the physical processes is done at the beginning of the 
design stage and is known as identification. Most often 
subject to identification is the physical process to be 
controlled, the so called Object of Control. As it is known, 
ANN in terms of calculation are “heavy” models, since they 
require computing resources greater than those necessary for 
other types of analytical models, however they have certain 
advantages – teach method similar to that of the human 
beings, solution supply guaranteed, input data noise 
resistance, “firm” structures (parallel structures) suitable for 
non-linear and MIMO models, etc. With the massive 
employment of high capacity computing equipment in the 
design, the ANN shortcomings are practically insignificant. 

For the dynamic control static and dynamic models are 
used. The output values with static models depend only on the 
input current values, while with the dynamic models they 
depend both on current and prior input values. In this writing, 
for the purpose of clarity, only SISO models are studied, the 
results, however, being in the greater part relevant for the 
MIMO models. 

It is known and proven that the straight ANN of definite 
number of neurons in the hidden layers are universal 
approximators of static functions (models) [1]. The aim of 
the present writing is to explore the ANN capabilities for 
dynamic processes modelling. 

 

II. MODELLING OF DYNAMIC PROCESSES WITH 

ARTIFICIAL NEURAL NETWORKS 

Since the experimental data identification problems are 
discrete in their nature, herein discrete models and methods 
are studied. 

If the discrete object input signal is )k(u  and the discrete 
object response is )k(y , then the general equation that is the 
discrete image of the continuous differential equation may be 
presented as: 
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where mn  . 
Without losing totality, it is studied the type where the 

values of )k(u  and )k(y  participate in a linear way, i.e. it 
easy to model an expression with these values but of non-
linear type. Often in identification these values are called 
regressors and they are assumed to be known values 
(measurable). 

The finding of an object relevant model of the above type 
means to determine the coefficients 
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so that when calculating the response )k(y  by the expression 
(model) above given for nk  , the difference with the 
measured value yo(k) to be minimal, i.e. 

0)k(y)k(y)k(e 0  . 
That problem is easy to solve provided that the necessary 

experiments are conducted with the object; it is far more 
difficult if the model is non-linear to the regressors. 

If we assume that through ANN processes in the object 
could be modelled (the dependency ))k(u(f)k(y0  ), the  
process of selecting a relevant model can be presented as the 
chart in Fig.1. 

 
 
 
 
 
 
 
 
 
 

Fig.1 Problem of the identification whit ANN 
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In this figure:  
О - object of identification (control); 
ANN - Neural network; 
 r - ANN training algorithm. 
It is seen in the chart that: the object output  coincides with 

the ANN output, i.e. y(k); the process of finding the 
coefficients Eq.(2) is transformed into a training process of 
the network with the object's input-output data [u(k), yo(k)]; 
the identification pattern is one and the same for identification 
of static, dynamic, linear, non-linear etc. models. 

The model type is determined by the ANN model and 
parameters, and the input-output data for training. 

The very nature of dynamic models supposes the use of 
more complex than the strait ANN structures, namely the 
ANN recurrent structures [2]. Characteristic of these 
structures is modelling of earlier (following) values of the 
quantities through unitary elements (z-1), for retaining the 
information in one stroke (discretization period - Т0) . 

For example: Eq.(1) could be presented with the structure 
in Fig.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Linear ARX model 
 
Obviously the chart in the grey (big) square is a linear 

perceptron that is a unitary structure building the ANN. It is 
so because Eq.(1) is of the autoregression type (АR). In this 
case it is evident that coefficients in Eq.(1) coincide with the 
connection weights at the perceptron input, so it is natural that 
the process of finding the coefficient Eq.(2) be transformed 
into an ANN training process. 

With more complex equations the chart shall contain a 
greater number of and/or with non-linear perceptrons, 
possibly distributed in different layers (multilayer), in which 
case  there is no congruence between connection weights and 
coefficients and the obtained model is of the “black box” type, 
namely ANN. 

It is not hard to present the models in the space state. 
If is writen the following for this type SISO models in 

general: 
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In this model x(k) is n–dimensional vector and the neural 
model is demonstrated with the chart in fig. 3 

 
 
 
 
 
 
 
 

Fig.3 Neural model in the space state.  
 
In this figure the blocks  L1 and L2 perform respectively the 

functions f1  and  f2 that generally can be implemented by a 
certain number and type of perceptrons distributed in two 
layers.  

If it is a linear object, the functions are linear, and so are the 
perceptron activating functions in the two layers. This is the 
case applicable for the AR models, most widely used in 
practice. Here the required computing capacity is minimal and 
the training process is the fastest. In many cases the non-linear 
models are modelled with only the first, L1 neural layer non-
linear.  

III.  EXPERIMENTAL DATA AND RESULTS 

The identification of actual physical objects is frequently 
done by experimental transient characteristics that contain the 
basic information of the static and dynamic properties, and 
therefore are used for objective evaluation of the control 
quality. The models are relevant if they produce one and the 
same response to various input signals. 

In this writing, for better flexibility is haven used data 
simulated with known discrete transfer function (TF) - W(z).  
The validation of the neural model is through visual 
comparison between the model response and the neural model 
response. 

The sufficient ANN for modelling linear models is a single-
layer linear neuron (one linear neuron) of one output and 
inputs depending on the model's order – Fig. 2. The training 
process is up to the level of the mean square difference (MSE) 
between the network output 1*10-10, by the Levenberg-
Marquardt recursion (trainlm). 

Training set is known with: the response values )k(y ; the 
amplitude of input signal )k(u tr ; is the measuring period Т0. 
utest  is the testing of neural model input signal. 

In this writing, through ANN have been modelled TF of a 
periodic second order object -Eq.4 and fifth-order oscillatory 
object – Eq.5. 
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t(0)=0; t(end)=4 sec.; T0=0.05 sec. 
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The ANN is taught with utr=1(k), for 5 epochs and the 
following difference is achieved  MSE=4.25*10-12. 

The test results with  utest=1(t)=utr  are given in Fig.4. 
The test results with  utest=1.2*1(t) are given in Fig .5. 
The test results with  utest=5*sin(t) are given in Fig.6. 
In all graphs: 
      -  object response (TC); 
 
      -  neural model response. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.4 Response with utest=utr =1(t) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Response with utest=1.2*1(t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Response with utest=5*sin(t) 
 
 
In fig.7 the response of the ANN that is taught and tested 

with the same ramp input, i.e. utrt=1*t=utest. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Response with utr=utest=t 
 
The oscillatory object is modeled by TF - Eq.(5). 
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t(0)=0; t(end)=160 sec.; T0=1 sec. 
The ANN is taught with utr=5*1(t) for 3 epochs and a 

difference of MSE=4.25*10-10 is achieved. 
The test results with  utest=5*1(t)=utr are given in Fig .8. 
The test results with  utest=1.2*1(t) are given in Fig .9. 
The test results with  utest=5*sin(t) are given in Fig .10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8 Response with utr =utest=5*1(t) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 Response with utest=1.2*1(t) 
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Fig.10 Response with utest=5*sin(t) 
 
 
Applying the same method, it has been performed training 

and testing of other neural models intended for modelling 
other functions, the results of which are skipped herein, since 
they are similar. 

IV. CONCLUSIONS AND RECOMMENDATIONS. 

All results lead to the following major conclusions: 
1) Through recursive ANN it is possible to model linear 

dynamic functions of random order only for the input signal 
with which they have been taught - Figs. 4, 7 and 8. 

2) The input training signal may be of arbitrary type (step, 
ramp, sinusoidal, etc.) - Figs. 4, 7 and 8.  

3) For linear objects, relevant neural models may be 
obtained also for input signals different from the amplitude 
training step ones, provided that the ANN is taught by the 
standard response characteristic, and the amplitude ∆u is 
accounted separately as a static amplification coefficient of 
object, i.e. 

if for u=1(t), the ANN response is y(t), then for u=∆u*1(t), 
the neural model response is  y(t)=∆u*y(t) 

4) ANN with single layer of neurons are preferred with 
modelling linear dynamic functions due to greater accuracy 
and faster teaching.  

5) With non-linear functions it is preferable to use double-
layer structures of first layer non-linear neurons, and one 
linear in the second layer. 

6) With ANN taught by the classical method (back-
propagation; Levenberg-Marquardt, etc.) dynamic functions 
of input signal different from the training one can not be 
modelled – Figs. 5, 6, 9 and 10. This is explained with the fact 
that networks store their inputs. They find one of the possible 
solutions. 

7) Taking into account the above examples and the 
arguments, obviously with ANN modelling we must consider 
the fact that the “black box” models have inaccessible state 
variables (unknown underlying structure), which to some 
extent limits their application. 
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