

Teaching FPGA-Based CPU Cores and Microcontrollers
Valentina Rankovska

Abstract – A methodology for teaching FPGA-based CPU
cores and microcontrollers from the very first stages is presented
in the paper. There are many difficulties for the students
connected with the FPGA and CPU hardware and software
complexity. Concrete steps, tools and examples are suggested to
achieve better results in teaching.

Keywords – Field-Programmable Gate Arrays (FPGA), CPU
(Central Processing Unit) Cores design, Microcontrollers,
Teaching methodology.

I. INTRODUCTION

In the second half of the PLD (Programmable Logic
Devices)-Based Circuits Design course the students have to
study implementation of the complex programmable logic
arrays to develop embedded systems. They are already
familiar with the architecture, features, operation, building
blocks modes, etc. of the conventional microcontrollers. This
is an actual problem because of the gradual involving of those
innovative devices into the scope of digital and
microprocessor circuits with the respective advantages [1].
The use of FPGAs also allows the students to study the
operation of the microprocessors form the inside, especially
when they try to make it themselves [6], [7], [8], [9].

On the other hand it is very difficult for the students to use
them, because of the following reasons:
• The architecture complexity of the FPGA integrated

circuits in comparison to the conventional ones;
• The more complex digital and microprocessor devices

design technology where completely new stages and
tools are used together with the traditional ones;

• Related with the previous point – new and considerably
more complex integrated development environments
with a quite many features and possibilities;

• The fact that the enormous logic capacity and the
possibility for using a great variety of IP (Intellectual
Property) cores allow building into one chip designs with
great circuit complexity and multidisciplinary nature;

• Except the upper featured objective preconditions – also
the lack of students’ motivation especially in the present
economic conditions, etc.

The aim of the present work is to suggest a methodology for
teaching/ study of a CPU (Central Processor Unit) core and
peripherals design with simple operation for educational and
research purposes.

II. PRELIMINARY KNOWLEDGE AND SKILLS OF
THE STUDENTS

Preliminary knowledge and skills form from previous
courses, connected with:
• Digital elements, devices and basic circuits;
• Architecture and operational principles of a hypothetical

microprocessor, microcontroller, embedded system;
• Architecture, building blocks and operational principles

of conventional general purpose microcontrollers;
• Assembler and high level programming languages.
Before to begin studying CPU cores design in the current

course the students are also familiar with:
• Architecture, features and resources of the Field-

Programmable Gate Arrays;
• Stages, hardware and software tools used to design

digital circuits in FPGAs;
• Hardware description languages such as VHDL, Verilog,

AHDL, etc. (Currently VHDL is used.)
Having in mind the difficulties for the students featured

before, they have to be supplied with enough data and
documentation:
• FPGA and development boards documentation –

handbooks, user manuals, tutorials, example projects,
which are useful in studying the features of the
programmable logic and development boards;

• Integrated development environment documentation
including tutorials helping to study the design sequence;

• Documentation and tutorials concerning the hardware
description language used (VHDL);

• Architecture and features of IP cores – CPU and
peripherals, which could be used freely for educational
purposes;

• Links to Internet resources like:
 Companies producing programmable logic and

hardware and software development tools;
 Sites of similar university courses, where often

variety of useful information could be found: lecture
presentations, labs, course and final projects, etc.

 Projects and forum sites concerning the subjects, etc.
Except supplying with documentation the requirements to

the students connected with the stated labs and projects
problems have to be extremely clear and detailed.

All this is achieved to a greater degree by the means of e-
learning, part of which is the Moodle course for the discipline
[4].

 Valentina Rankovska is with the Faculty of Electrotechnics and

Electronics at Technical University of Gabrovo, 4 H. Dimitar str.,
Gabrovo 5300, Bulgaria, E-mail: rankovska@tugab.bg.

835

III. TEACHING METHODOLOGY IN DESIGNING
FPGA-BASED CPU CORES AND PERIPHERALS

FPGAs of Altera are used in the learning process together
with the free version of the software - Quartus II Web Edition
and development boards TREX C1 and DE2-70 with FPGA
Cyclone and Cyclone II respectively.

There are two possible design approaches, which can be
used with the full version of Quartus II:

• Flat compilation flow with no design partitions – the
entire design is compiled together; it is applied for small and
not too complex designs. The software performs the defined
logic and placement optimizations on the whole design. This
approach is easy to implement and is the only one possible
with the free version of Quartus II. It is not convenient for
large designs as the compilation time increases considerably.

• Incremental compilation with design partitions - the
design is split into partitions, on which different designers can
work independently. This can simplify the design process and
reduce compilation time. It is preferable in large and complex
designs.

The first approach is used in the laboratory classes as on
one hand it is free and on the other hand it is easier to
implement with the comparatively simple students’ projects.

The CPU core design is a complicated and quite difficult
process. That is why the students wouldn’t be able to acquire
the design of a core for a real application for the short time of
the course. And also the course is not dedicated only to
microprocessor systems design, but to more general object.

We must have in mind that during the Microprocessor
Circuits course (held in the previous semester) they have
studied the architecture and the operation of a hypothetical
microprocessor on the level of building blocks. That is why it
is necessary to pass through the following stages in studying
the design of microprocessors and microcontrollers in order to
be easier for the students:

1. Embedded system design using software module for its
generation and library components, defined from the
designer (student):
• Studying the library features and resources of the

software module for system-on-a-programmable chip
synthesis SOPC Builder (included in Quartus II);

• Studying the architecture, features and configuring
options for the three versions of the software core Nios II
of Altera;

• Designing an embedded system based on Nios II with
reduced set of peripherals.

2. Design of a CPU core with simple set of operations and
peripherals:
• Planning the CPU core architecture with a reduced set of

operations;
• Designing definite blocks of the CPU core, beginning

with the Arithmetic-Logic Unit (ALU);
• Expanding the microprocessor core to achieve a working

variant for learning purposes;
• Designing memory blocks and peripherals with reduced

complexity;

• Joining together and testing the operation of the CPU
core and the peripheral blocks.

3. Analysis and study of a ready CPU core functionalities
with simple architecture

Different design approaches are used at the different
teaching stages. Firstly the students learn to develop digital
projects by inputting the design using Block/ Symbol Editor
and library components of Quartus II (they synthesize the
circuit (circuits) in a form of a block/functional diagram). The
approach is used in the first stage. The modeling in the second
stage is performed in VHDL.

It must be noticed here that software development tools for
the student processor are not created having in mind the
defined course purposes and the limited course workload.

Developing an embedded system using library
components

The software module SOPC Builder is used for system in a
chip generation. A microprocessor circuit, based on Altera’s
software processor Nios II is developed (Fig. 1) [3].

SOPC Builder enables to define and generate entire system
in a programmable chip in an easy way. The designed system
could be based on a processor or not and if there is a processor
in it, it may be Nios II or other. The module connects together
the components of the system automatically. For that purpose
it makes the routing and (if it is necessary) generates
interconnect logic. That is why it is very suitable for the
lowest level of learning.

The GUI (Graphical User Interface) of SOPC Builder with
library components added is shown in Fig. 2.

It was mentioned that at this stage the students are already
familiar with a hardwired conventional microcontroller from
the Microprocessor Circuits course. Now they have the
opportunity to design their own microcontroller with flexible
reconfigurable architecture and to test it. And moreover – on
one hand they do not need still to examine the inside structure
of the used blocks and on the other hand they may configure
them according to the assignment in the laboratory class.

Design of a CPU core and peripherals
• Planning of a CPU core architecture

JTAG

Avalon switch fabric

Embedded
memory

PC

Nios II

Memory
interface

Parallel I/O
interface

Serial I/O
interface

Embedded
periferials

Memory Periferials Periferials

FPGA

Fig. 1. SOPC based on Nios II and DE2-70

836

It is a considerably complicated stage which is difficult for
the students at most degree. That is because till the moment
they have studied a ready submitted structure and an operation
of a microprocessor and a microcontroller without explaining
the reasons for being that. So the processes passing in the
blocks and the ways of their interaction are still hidden for the
students.

At the CPU core design, although it is not obvious, the
process begins not from the mechanical “collecting” of blocks
building its architecture (though at the end it will looks like a
known one), but from the answers of the following general
questions:

 What kind of operations have to perform the
designed processor;

 How it will access the various types of memory
blocks, etc.

 A functional diagram of a general purpose microprocessor
is shown in Fig. 3 [7].

After defining the instruction set the ways of their decoding
and execution have to be determined. Several questions must
be answered: how many and what kind of operations must be
able to execute the processor; what will be the mnemonic
code of the instructions; what operation code will be assigned
to each instruction and what will be their length.

After that the design of the executable unit follows. A
datapath has to be made on this step, so the following
questions have to be answered: what kind of operation unit we
need; how many registers; how will they be organized; how

will be connected the two units – the control and the
executable ones.

At creating the datapath we have to determine how the
processor will fetch and execute the instructions from the
program memory. In this connection there are additional
operations and registers, for instance the program counter
(PC), the instruction register (IR), etc.

The control unit cyclic pass through three major steps,
called usually instruction cycle: 1) instruction fetch; 2)
instruction decoding and 3) execution. Every step is executed
during one state of the state machine.

The simplest variant of a completely synchronous
programmable logic-based device is a RISC processor with a
two-stage pipelined execution of the instructions.
• Arithmetic-Logic Unit
We use a minimum number of instructions executed by the

ALU for the example training processor – addition,
subtraction, increment, decrement, logic AND, OR, NOT and
accumulator output. Hence three bits are enough for the
operation codes (S). Two general purpose registers are used –
А and В. The operands are 4-bits long in order to implement
the project using the 18 switches of the development board.
We have to input the operands and the machine code of the
instruction tested. The process, in which body the instructions
are modeled (in VHDL), is the following:

PROCESS(S, A, B)
BEGIN
 CASE S IS
 WHEN "000" => F <= A;
 WHEN "001" => F <= A AND B;
 WHEN "010" => F <= A OR B;
 WHEN "011" => F <= NOT A;
 WHEN "100" => F <= A + B;

 WHEN "101" => F <= A - B;
 WHEN "110" => F <= A + 1;
 WHEN OTHERS => F <= A - 1;
 END CASE;

END PROCESS;

The students perform a functional simulation to test all the
operations and for that purpose they first make a vector
waveform file. Practically the design is tested on the DE2-70
development board. A test of the “adding” operation is shown
in Fig. 4.

After that additional blocks and features have to be added at
the development process, such as: interrupt management
block; reset control block; ways to access the memory blocks,
including pointer and data registers, instructions, status flags,

Fig. 2. Components of SOPC system based on Nios II

Fig. 3. Functional circuit of a general purpose CPU

Fig. 4. Testing the instruction for addition of two register operands

837

etc. It is also necessary to organize the pipelined execution of
the instructions.

These problems are quite complicated to be performed in
the laboratory classes and further more - for the part of the
semester. That is why the students have to be supplied not
only with detailed directions for completing the tasks but also
with additional information like ready models of similar
blocks. They will have the opportunity and the task to analyze
and modify them and also to make course and final projects.
• Program and Data memory
The FPGAs Cyclone II include embedded memory

consisting of columns of M4K blocks that can be configured
to provide various memory functions such as RAM, first-in
first-out (FIFO) buffers, and ROM. M4K memory blocks
provide over 1 Mbit of RAM at up to 250-MHz operation. It is
not enough volume for the most real applications but it is
enough for the designed simple processor.

The М4К blocks which are used as a program memory, are
initialized in advance with the operation codes of the
instructions of the example test program. For that purpose the
embedded in Quartus II memory editor is used.

Analysis and study of a ready CPU core functionalities
with simple architecture

The study of a ready software core for a real application is
an extremely complicated process, even if it is simple. It is a
stage which could be applied in activities like extracurricular
unaided work or team-based work at the end of the course,
practices, course and final projects. For that purpose it is
convenient to use free software core with a comparatively
simple functions [2], [5].

IV. CONCLUSION

A methodology for teaching FPGA-based CPU cores and
microcontrollers from the very first stages is presented in the
paper.

There are many circumstances which make difficult for the
students to study the microprocessor and microcontroller
development using programmable logic. The suggested
approach includes step by step beginning with simple
problems design of two kinds of microprocessor systems with

minimum functionalities – using library components and
modeling a system with VHDL.

The future work addresses enlarging the e-learning means,
like animations, multimedia, etc.

Also an archive of custom (students) library components
and projects will be made, which will be accessible for the
next-year students as useful examples – to learn and expand.

ACKNOWLEDGEMENT

The present work is partially supported by the Science
Research Fund at the Ministry of Education, Youth and
Science.

REFERENCES

[1] V. Rankovska, H. Karailiev. “Digital Devices and Systems
Design using Field-Programmable Gate Arrays”, «Е+Е», no.1-
2, pp. 8-15, 2011. (in Bulgarian)

[2] V. Rankovska, “Microprocessor Cores for Complex
Programmable Logic Arrays”, Unitech’11, Conference
Proceedings, vol. 1, pp. I-186 – I-191, Gabrovo, Bulgaria, 2011,
(in Bulgarian)

[3] V. Rankovska, “FPGA (Field Programmable Gate Arrays) –
based System-on-a-Programmable-Chip Development for
Educational Purposes”, ICEST 2012, Conference Proceedings,
vol. 2, pp. 489-492, Sofia, Bulgaria, 2012.

[4] umis.tugab.bg/moodle/
[5] www.opencores.org
[6] V. Sklyarov, I. Sklyarova, “Multimedia Tools for Teaching

Reconfigurable Systems”, MoMM2006 Conference
Proceedings, pp. 211-220, Yogyakarta, Indonesia, 2006.

[7] Enoch O. Hwang, “Digital Logic and Microprocessor Design
With VHDL”, La Sierra University, Riverside, 2005.

[8] Thomas Weng, Yi Zhu and Chung-Kuan Cheng, “Digital
Design and Programmable Logic Boards: Do Students Actually
Learn More?”, 38th ASEE/IEEE Frontiers in Education,
Conference Proceedings, Saratoga Springs, NY, 2008.

[9] Joaquín Olivares, José Manuel Palomares, José Manuel Soto
and Juan Carlos Gámez, “Teaching Microprocessors Design
Using FPGAs”, IEEE EDUCON Education Engeneering,
Conference Proceedings, pp. 1189-1193, Madrid, Sapin, 2010.

838

