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Abstract—While the field of one dimensional constrained codes
is mature, with theoretical as well as practical aspects of code-
and decoder-design being well-established, such a theoretical
treatment of two-dimensional (2D constraints is still unavailable.
A considerable research was conducted on numerous classes
of 2D constraints such as hard triangle model, run-length
limited constraints on the square lattice and 2D checkerboard
constraints, but in spite of these efforts, these constrained systems
remain largely uncharacterized mathematically with only loose
bounds of capacities existing. In this paper we present a lozenge
constraint on a regular triangular lattice and derive Shannon
noiseless capacity bounds. To estimate capacity of lozenge tiling
we make use of the bijection between the counting of lozenge
tiling and the counting of boxed plane partitions.

I. INTRODUCTION

To improve the performance of a two-dimensional (2D))
recording system, a sequence of bits to be recorded onto a
medium is first transformed into a pattern with properties
that enable reliable reading. This transformation is called
constrained coding. Constrained, because only a subset of all
possible patterns is permitted to be an input to a recording
channel. The readback pattern is transformed back to a binary
sequence by a constrained decoder. The readback process is as-
sumed to be errorless (noiseless). Coding for one dimensional
constrained noiseless channels has been extensively studied,
and myriad of codes have been developed and implemented in
today’s systems. It is much less known about two-dimensional
constrained codes. In fact, 2D} constrained coding problems
are notoriously hard - only a few constraints have a closed
form selution for the Shannon noiseless channel capacity, and
no systematic approach exists for calculating capacity nor
constrained code construction. The key novelty of the our
approach is to view a 2D constraint as a colored tiling of a
plane. This is a departure from the existing methods and allows
using the rich theory of planar gas models from statistical
mechanics and the theory of domino and lozenge tilings
from combinatorics. In this paper we derive a framework for
designing encoders and decoders for a triangular grain model.

Two-dimensional constraint is a restriction on a coloring
{or labeling) of tiles in a regular tiling. The most famous
example is a hard-hexagon constraint, which is a planar lattice
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gas model with nearest-neighbor exclusion used in statistical
mechanics. The hard-hexagon constraint allows only those (bi-
nary) colorings in which black hexagons are isolated, i.e. have
all white neighbors. A hard-triangle and hard-sqare constraints
are defined similarly. A two-dimensional runlength (d, k)
constraint is a restriction on the separation space between
black tiles, so that the number of white tiles between two black
tiles in any direction is at least d and at most &. Hard-hexagon,
hard-triangle and hard-square constraints are (d, %) = (1, oo}
runlength constraints.

In [1] we have shown that constrained coding which restricts
the oceurrence of such patterns greatly reduces system com-
plexity and improves the detection performance. In our prior
work [2] we considered a tiling with rectangular prototiles rep-
resenting grains. More generally, collections of adjoining cells
are called polyominoes or animals, objects studied in combi-
natorial mathematics [3]. The recording medium can now be
modeled as a tiling of a plane with a given set of polyominoes
and with an appropriately chosen probability distribution. This
can be simplified by restricting the possible shapes of grains.
Although algorithms for generating domino tilings of planes
are known [4]-[6], tiling of planes with polyominoes whose
occurrences are governed by a probability distribution is a non-
trivial problem (e.g. [3], [7]). The Shannon noiseless capacity
of a 2D constraint is defined as an asymptotic growth rate
of a number of distinct (reconstructible) patterns permitted
by the constraint. The main idea is to estimate the number
of permissible tilings, which will lead to upper bounds on
Shannon noiseless capacity of 2D constrained channels, and
determine the achievable rates of the constrained codes.

The rest of the paper is organized as follows. In Section
IT we first introduce a lozenge constraint and establish the
connection between lozenge tilings and boxed plane partition.
Then we proceed to determine the capacity bounds by splitting
the problem into tiling and coloring. Section IV concludes the
paper and puts our work in the perspective with efforts in
combinatorics.

II. LozENGE CODES

Consider a regular tiling of a plane. A (d, k) segregation
constraint is a tiling that limits the number of neighboring
tiles (neighborhood size) of same color to be no less than
d+ 1 and no more than &k + 1. A 2D bit pattern is said to
satisfy a no isolated bir (NIB) constraint if every bit has at
least one bit of the same polarity adjacent to it. Thus the NIB
isa(d, k) = (1,00) segregation constraint.

Consider a hexagon H with sides of lengths a,b, c,a,b,c
and angles of 2« /3 subdivided into equilateral triangles of unit
side by lines parallel to the hexagon sides. We will henceforth
refer to such equiangular triangularized hexagons as (a,b,c)



hexagons. Figure 1(a) shows such a (2,3,4) hexagon. As
mentioned earlier, two triangles are neighbors if they share
a side.
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Fig. 1. Lozenge tilings in a triangular lattice: (a) A (2,3.4) hexagon H
embedded in a triangular lattice. (b) Colored tiling of a (2.3.4) hexagon.

We are interested in coloring the triangles using M different
colors in such a way that no isolated triangle is colored
differently than its neighbors. We focus mainly on the M = 2
case. We require a segregation of at least two neighboring
triangles of the same color. Fig. 1(b) shows one such coloring
of the lozenge-tiled (2, 3, 4) hexagon shown in Fig. 1(a).

Two neighboring triangles form a rhombus with side of
unit length and internal angles Z and 27. Such a rhombus is
known as a lozenge. A lozenge created in this way may have
three different orientations. Therefore, for any triangle there
must be at least one neigboring triangle with the same color,
ie. (d.k) = (1,0c). More specifically, we are interested in
the constraint which allows independent coloring of different
lozenges. This means that the neighborhood size is at least
two, and is even.

Now the NIB coloring can be separated into two steps
as illustrated in Fig. 2. First, the triangular grid is tiled
with (uncolored) lozenges, and then the lozenges are colored
independently.

III. BOUNDS ON CAPACITY

For a fixed shape on the lattice where the information is stored
(a hexagon in our example), one would like to find the number
of distinct colored patterns as a function of the area, and/or
its behavior when the size grows to infinity. For an equilateral
hexagon with side n on the triangular lattice, the Shannon
noiseless capacity is

logy M(n,n,n)

C = lim

n=—roo 6n2

where M(n.n,n) is the number of distinct two-colored
patterns (6n° is the number of triangles in the hexagon.)
Similarily, if N(n,n,n) denotes the number of uncolored
patterns (tilings), the asymptotic growth rate of N(n,n,n) is
referred as riling capacity.

In contrast to existing approaches, our method is inspired
by the theory of domino tilings of lattices. In particular, we
are interested in calculating the number of colored domino
tilings of a given lattice. Observe that this will yield bounds
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Fig. 2. Colored lozenge tilings in a triangular lattice: (a) A hexagon with

side-length of 6 embedded in a triangular lattice. (b) An uncolored lozenge
tiling of the hexagon. (¢} A colored lozenge tiling of the hexagon.

on the capacity of the NIB constraint because the problem
of estimating the capacity C ooy of the NIB constraint for
the triangular lattice model, can be divided into two simpler
independent problems: tiling of a hexagon with lozenges and
the coloring the lozenge tilings.

Given that information storage capacities of tiling and
coloring of tiling are C'r and C¢ ., respectively, the capacity
of the constraint can be bounded from below by the sum of
C7 and C. That is,

Cii,00) 2> Cr + Ce (1)

A. A Method Based on Boxed Plane Partitions

A plane partition 7 is a collection of non-negative integers
7.,y indexed by non-negative integers ., y such that (a) only fi-
nite number of 7, , are non-zero and, (b) Va,y 7,y < T y+1
and 7., < m,4+1,,. The plane partition is said to fit inside a
box of dimension a x bx ¢ if there exist integers a, b, ¢ such that
ey < cforall 2,y and 7, , = 0 for all > a,y > b. Such
partitions are called boxed plane partitions. A more intuitive
way of visualizing the boxed plane partitions is by constructing
the Young’s solid diagram corresponding to a boxed partition
w. For instance, consider the following partition boxed within
a box of dimension 2 x 3 x 4.

(402 2
™l2 11

The dimension of the matrix is 2 x 3 with all entries < 4.
To build its corresponding Young's solid diagram, we first
consider a box of dimension 2 x 3 x 4. To one of the vertices,



we assign the Cartesian co-ordinate (0.0,0). To the opposite
vertex we assign the co-ordinate (2, 3,4). Foreach x < 2,y <
3, we start at (x — 1,y — 1,0) and stack ,, cubes of unit
side length. This construction will fit inside the box.
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Fig. 3. Tiling corresponding to the boxed plane partition 7.

The tiling given in Fig. 3 corresponds to the boxed plane
partition 7 given above. The Young’s solid diagram construc-
tion is also apparent if the tiled (2, 3,4) hexagon is visualized
as a 2 x 3 x 4 box. For ease of visualization, the top face of
the topmost box is colored black. The relationship between
lozenge tiling and boxed plane partition is given in [8].

Lemma 1: The number of boxed plane partitions fitting
inside a @ x b x ¢ box is equal to the number of lozenge
tilings of an (a,b, ¢) hexagon.

Proof: The proof is based on MacMahon [9] formula.

B. Estimation of Cp

By Lemma 1, the number of lozenge tiling of any (a,b, ¢)
hexagon is equal to the number of boxed partitions fitting
inside an a x b x ¢ box. MacMahon [9] found the number of
such partitions, N p.c). t0 be Nigpo) = [T, (c+1)p/(i)s
where (i), = i(i + 1)( + 2)...( + n — 1) is the rising
factorial. For an equilateral hexagon, we were able to find the
capacity of tiling (without coloring) in a closed form. It is
given by Theorem 1.

Theorem 1: The capacity of the lozenge tiling for an
equilateral hexagon is Cr = 3 log, 3 — 1.

Proof: The proof follows from Lemma 1, but is omitted
due to space limitations.

Note that closed forms solutions for the capacity such as
one given by the above theorem are quite rare in problems
involving 2D constraints.

C. Estimation of C¢

The capacity of the coloring problem, C¢, can be estimated
by counting the number of ways the lozenges constituting a
lozenge tiling can be colored. Given a lozenge tiling of an
(n,n,n) hexagon, H, the coloring of the lozenges cannot
be done arbitrarily. To explain this, we consider a colored
lozenge tiling of the (2,1,1) hexagon which is shown in
Figure 4. Figure 4(a) shows the colored lozenge tiling without
any boundaries. In the absence of the tiling information, the
decoder would not be able to decode this tiling correctly.

Figures 4(b) and 4(c) show two possible lozenge tilings
this can be decoded to. This means that in the absence of
knowledge of the tiling pattern, the colored tiling in Figure 4(a)
is not uniquely decodable. In specific, the two tilings of the
(1,1,1) hexagon formed at the bottom of the larger hexagon
(marked with bold edges) cannot be identified uniquely.

(a) (b) (c)

Fig. 4. Figure (a) shows a colored lozenge tiling for a (2,1,1,) hexagon.
In the absence of tiling information, the colored tiling in Figure (a) can be
decoded to either of the colored tilings shown in Figures (b) and (c)

We denote the (1,1, 1) hexagon formed in Figures 4(b) and
4(c) as type-1 and type-2 hexagon, respectively. To distinguish
the two hexagons, we apply the following rule: Whenever a
type-1 hexagon is encountered, the vertical lozenges constitut-
ing it are colored differently. By using this coloring scheme,
no information is stored in the vertical lozenges of the type-
1 hexagon. This constraint reduces the number of ways of
coloring for each tiling. This reduction depends on the number
of type-1 hexagons formed in a tiling. The capacity can be
bounded by calculating the number of type-1 hexagons formed
for every tiling.

Fig. 5. Figure shows the coloring scheme adopted for type-1 hexagon.

The capacity of the coloring problem, C¢, can be estimated
by counting the number of ways the lozenges constituting a
lozenge tiling can be colored. Given a lozenge tiling of an
(n,n,n) hexagon, H, the coloring of the lozenges cannot be
done arbitrarily.

Theorem 2: For the coloring of a lozenge tiling of an
(n,n,n) hexagon H, the capacity C¢c > 1.

Proof: The proof is based on the equivalence between
tilings and boxed plane partitions and Lemma 1 It is given in
Appendix A. '

Note that the above bound on C may be strengthen at the
expense of much harder combinatorial argument considering
colors of tiles.



IV. CONCLUSION

The use of colored tilings to estimate capacity is attractive
due to the fact that the theory of counting domino tilings
is well-explored [8], [10]. Early work in counting domino
tilings includes the work of Kasteleyn [4], who calculated the
number of domino tilings of a square lattice. Another work
is that of MacMahon [9] in which the number of lozenge
tilings of a hexagon embedded in a triangular lattice was
calculated. Desreux and Remila [6] gave optimal algorithms
for the generation of domino tilings and lozenge tilings. We
have exploited these results to establish bounds on constrained
codes on the regular triangular lattice.
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APPENDIX A

Proof of Theorem 2: MacMahon formula [9] gives the
number N(a,b, <) of restricted plane partitions in the form

i+i+k—1
11115

i=1j=1k=1

N(a,b,c) =

It can be rewritten as

N(a,b,c) = H (C(_:):)b

where (7), 1= ¢(:+1){¢+2)...(¢+n—1) is the rising facrorial.
Since (i)n, = (i +n — 1)1/{a — 1)!, we have

Zlet+d)y  ppletitb—DIE- 1)
H o ’Hl(cﬂ'—l)!(ijub—l)!

Each product of factoriels in A is of the form [[;_, (d+i—1)!
and can be written as

d4+a—1 i1
H(d+ i-Nl= HT
i=1 Hz_l '

The superfactorials [;_; ¢! in A can be expressed as [];~;
il = G(n+ 1). Therefore we obtain

i=1

ﬁ Gla+b+e+ DNGla+ DG +1)GEc+1)
Gla+b+1)Gla+c+ 1)Gb+ec+1)
@)
where in Eq. 2 G denotes the Barnes G-Function [11] defined
by

Na,b,c) =

i=1

Gld +1) = (2m) F e (D)

+oo H
{18 ewom)
i=1 ¢

For a regular hexagon with a = & = ¢ = n we have

G Br+1) (Gln+1))°
[ G(2n +1)8

N(n,n,n) = 3)

=1

Using the asymptotic of G (d +1)

lnG'(dJrl)NzQ( lnsz)Jr ln(QJr)zf

—Elnz +E (- 1)0(5)

we obtain
InN(n,n,n) ~ InGBr+1)+3InGrR+1) -

—3InG(2n +1)

9
~ n? <§1n3761n2> +

+nln2r — llnn

12 122
By changing the base of the logarithm we obtain

9
logs N(n,n,n) ~ n (5 log, 3 — 6) {4

The area of the hexagon with sides a,b and ¢ is A{a,b,c) =
2(ab—|—ac+bc)%. For a regular hexagon A{n,n,n) = QTﬁnQ,
so that finally the density is

b g log Nenn,n)
nseo  Aln,n,n)
9
— fm n® (5 logy, 3 — 6)
n—poo QQﬁnQ

4
V3(logy 3 — g)
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