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Abstract – This paper gives a review of the existing models of 
inductive reasoning. Inductive reasoning is related to drawing 
conclusions that are not certain or logically valid, but still likely. 
It is used to make likely but not certain predictions about how 
people will behave in new situations. The computational models 
considered in this paper describe the basics of inductive 
reasoning, they implement and present how the models work, 
and give their positive and negative sides. 
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I. INTRODUCTION 

The practical problem of induction goes from childhood 
and does not disappear with adolescence. Adults face it every 
day whenever they make any attempt to predict an uncertain 
outcome. Inductive inference is a fundamental part of 
everyday life, and for cognitive scientists, a fundamental 
phenomenon of human learning and reasoning in need of 
computational explanation. Inductive reasoning is potentially 
an extremely large topic, especially because it is often defined 
as reasoning about problems that do not involve perfectly 
certain conclusions [1]. The class of problems that have 
perfectly certain conclusions is much more circumscribed, for 
example, it could be defined in terms of a set of logical rules 
about what conclusions must follow from a given set of 
premises. In comparison, the set of problems for which 
inductive reasoning applies is potentially “everything else,” 
and that is indeed a large and varied set.  

The paper is organized as follows. In section II we will get 
to know the basic effects of data in human inductive 
reasoning. We will present the Similarity Effects, Typicality 
Effects and Diversity Effects. The computational models of 
human inductive reasoning, based on these effects, will be 
presented in section III. Here we will compare some of the 
computational models, and give references for modifications 
of some of the basic models. 

II. BASIC EFFECTS OF DATA IN HUMAN INDUCTIVE 
REASONING 

A. Similarity Effects 

The idea that similarity should guide inductive reasoning 
has a distinguished history. Some scientists argued that “what 

happens once, will, under a sufficient degree of similarity of 
circumstances, happen again.” For example [1] if you want to 
buy a CD for your friend, if you know that she likes 1960s 
albums by Rolling Stones and does not like Celine Dion, the 
most promising strategy is no doubt to buy her a CD by a 
similar 1960s band rather than by someone else who sings like 
Celine Dion. Some research has contributed to the study of 
induction by describing structural relations between similarity 
and induction in a detailed mathematical form .What is crucial 
about these studies is the assumption that inductive reasoning 
can be accounted for in terms of a single measure of similarity 
[2]. Although these studies were successful at modeling 
induction by using just one kind of similarity, they did not 
attempt to describe reasoning about more than one kind of 
property. In the next section we will present a mathematical 
model that successfully derives its predictions from similarity 
measures obtained from other subjects, again pointing to the 
role of overall similarity in inductive reasoning. 

 B. Typicality Effects 

This phenomenon is closely tied to categorization research, 
in particular the idea that not all category members are equal, 
but instead some are more prototypical than others [1]. 
Returning to the buying a CD problem, if your friend likes 
albums by Rolling Stones, a prototypical 1960s guitar-based 
rock band, there would seem to be a lot of similar 1960s bands 
to choose from. On the other hand, if you know that she likes 
albums by Moody Blues, a much less typical 1960s band that 
recorded with a symphony orchestra, it would seem harder to 
choose another 1960s band that she would like – she might 
only like rock bands that use classical music. There was an 
additional effect of typicality beyond what might be predicted 
based only on similarity. Intuitively, if a typical mammal, 
such as a horse, has a disease, then perhaps all mammals have 
it, that is, the property applies to the super-ordinate category. 
On the other hand, if mice have a disease, it might be 
restricted to a subcategory of mammals, such as rodents. In 
sum, the typicality effect is another robust phenomenon that 
must be addressed by the models of inductive reasoning. 

C. Diversity Effects 

The diversity effect is somewhat more elusive than 
similarity or typicality, but it, too, has a distinguished history. 
The diversity effect is also well illustrated in the example of 
buying a CD. If your friend actually likes both Rolling Stones 
and Celine Dion, then you might infer that she has broad 
tastes in music, and it would be safe to buy her one of many 
styles of music. On the other hand, if you know she likes 
Rolling Stones and The Who, another guitar-based 1960s 
band, you might infer that her musical tastes are fairly narrow 
after all, and you should not stray too far from similar bands. 
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III. COMPUTATIONAL MODELS 

A. Similarity-coverage model 

The similarity-coverage model (SCM) presented in [3] is 
perhaps the best known mathematical model of property 
induction. It predicts the strength of inductive arguments as a 
linear combination of two factors, the similarity of the 
conclusion to the premises and the extent to which the 
premises “cover” the smallest super-ordinate taxonomic 
category including both the premises and the conclusion [4]. 
For single-premise arguments, coverage more or less reduces 
to typicality, but for multiple-premise arguments, coverage 
gives something closer to a measure of diversity. Coverage is 
most easily explained with examples: 

Mice have property X.                                                       (1) 
----------------------------- 
All mammals have property X. 
 
Horses have property X.                                                    (2) 
---------------------------------- 
All mammals have property X. 
 
Hippos have property X.                                                    (3) 
Rhinos have property X. 
---------------------------------- 
All mammals have property X. 
For arguments (1) and (2), the lowest level super-ordinate 

that includes all the categories is mammal. Coverage is 
assessed in terms of the average similarity of the premise 
category to the members of the super-ordinate. To the extent 
that horses are more typical mammals than mice and therefore 
more similar to other kinds of mammals, argument (2) will 
have greater coverage than argument (1). This is how the 
model addresses typicality effects. When assessing similarity 
between members of the super-ordinate category and the 
multiple premises, only the maximum similarity for any one 
premise category is considered. So for argument (3), very 
large mammals tend to be similar to both hippos and rhinos, 
and small mammals tend not to be similar to hippos and 
rhinos. So including rhinos as a premise category does not add 
much information beyond just having hippos as a premise 
category alone. The model in [3] can be written out more 
formally, as shown in Eq. 1: 
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Here, α refers to the relative influence of the similarity 
component (ranging from 0 to 1) and (1−α) is the influence of 
the coverage component. This equation applies when there are 
n premise categories P and one conclusion category C. When 
the premise and conclusion categories are all at the same 
taxonomic level (e.g. robins, blue-jays; sparrows), then SIM 
returns the maximum of the pairwise similarities between 
each Pi and C. When the conclusion category is at a higher 
taxonomic level than the premise categories then SIM is 
applied recursively to known c that are members of C and 
averaged over these c. Generally speaking, this model 

addresses a wide variety of structural phenomena in inductive 
reasoning and is particularly impressive in how it puts 
together information from multiple premises, because of the 
powerful combination of similarity and coverage components. 
Although the model does incorporate some information about 
categories and similarity, it does not address background 
knowledge effects, such as the differential use of similarity 
and properties in [2], exceptions to diversity in [5], or, more 
generally, any use of causal knowledge or causal reasoning. 
Some new research, described in [16], uses this model. 

B. Feature-based model 

The feature-based model in [6] computes inductive strength 
as a normalized measure of feature overlap between the 
conclusion and the example categories. The author in [6] 
presents a quantitative comparison with the SCM: the results 
are not conclusive, but suggest that the model does not predict 
human judgments as accurately as the SCM. The model, 
however, predicts some qualitative phenomena that the SCM 
can not explain. More recently, authors in [7] have presented a 
feature-based approach to semantic cognition that uses a feed 
forward connectionist network with two hidden layers. This 
connectionist approach is more ambitious than any of the 
others we describe, and the authors apply their model to a 
diverse set of semantic phenomena. One of the applications is 
a property induction task where the model makes sensible 
qualitative predictions, but there has been no demonstration so 
far that the model provides good quantitative fits to human 
judgments. From our perspective, both feature-based models 
share the limitations of the SCM. Despite the range of 
applications in [7], it is not clear how either model can be 
extended to handle causal settings or other inductive contexts 
that draw on sophisticated domain knowledge. The models 
also include components that have been given no convincing 
justification. The model in [6] uses mathematical measure of 
feature overlap, but it is not clear why this should be the right 
measure to use. The authors in [7] provide no principled 
explanation for the architecture of their network or their 
strategy for computing the strength of inductive arguments, 
and their model appears to rely on several free parameters. 
The model relies on similarity effects since training and 
testing using similar input vectors will lead to strong outputs 
during testing. Input vectors and outputs are connected with 
an activation function witch is described in [1] as follows: 
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In this function n is a set of given premise categories p with 
a conclusion category C. W represents a vector corresponding 
to the already-trained weights in the network after the premise 
categories have been learned. C is a vector corresponding to 
the future representation of the conclusion category. The dot 
product between W and C is computed, yielding a value 
corresponding to the similarity between the premise categories 
and the conclusion category. For example [1] donkeys and 
mules would have many features in common, and there would 
be a fairly high, positive dot product between the two vectors. 

58 



On the other hand, donkeys and ostriches would have fewer 
features in common and would give a lower dot product, 
perhaps close to zero. Finally, the activation is scaled in the 
denominator, by the squared length of the vector C, essentially 
a measure of the number of known features of C. If C 
corresponds to a well-known category, such as dogs, it will be 
relatively difficult to draw a new conclusion. If C corresponds 
to a poorly known category, such as ocelots, it will be easier 
to draw new conclusions about the category. The model 
described in [6], like the model described in [3], can account 
for many structural phenomena in inductive reasoning, but it 
does not address background knowledge effects and does not 
use knowledge about properties, which guides towards the use 
of similarity or information about causality. 

C. Bayesian model 

According to the Bayesian model described in [1,8], 
evaluating an inductive argument is conceived of as learning 
about a property, in particular, learning for which categories 
the property is true or false. The Bayesian model treats the 
premise or premises in an inductive argument as evidence, 
which is used to revise beliefs about the prior hypotheses 
according to Bayes’ theorem. Once these beliefs have been 
revised, then the plausibility of the conclusion is estimated. 
The Bayes’ theorem is shown in Eq. 3. 

( ) ( ) ( )
( ) ( )∑

=

= n

j
Jj

ii
i

HH
HHH

DPP

DPP
DP

1
|

|
|

 (3) 

In applying Bayes’ theorem in Eq. 3, the premise is treated 
as the data, D. The prior degree of belief in each hypothesis is 
indicated by P(Hi). The task is to estimate P(Hi | D), that is, 
the posterior degree of belief in each hypothesis given the 
data. The Bayesian model addresses many of the key 
phenomena in inductive reasoning. For example, the model 
predicts the similarity effect because novel properties would 
be assumed to follow the same distributions as familiar 
properties. The Bayesian model also addresses typicality 
effects under the assumption that according to prior beliefs, 
atypical categories would have a number of idiosyncratic 
features. In comparison, prior beliefs about typical categories 
would indicate that they have many features in common with 
other categories. The Bayesian model, unlike the previous, 
also addresses diversity effects with a rationale similar to that 
for typicality effects. This is good because if we take for 
example an argument with two similar premise categories, 
such as hippos and rhinos, this could bring a lot of 
idiosyncratic properties that are true just for large mammals. 
In a same way a novel property of hippos and rhinos might 
seem idiosyncratic as well. In contrast, an argument with two 
diverse premise categories, such as hippos and hamsters, 
could not bring to mind familiar idiosyncratic properties that 
are true of just these two animals. Instead, the prior 
hypotheses would be derived from known properties that are 
true for all mammals or all animals. In other way some of the 
authors in [8] showed that the Bayesian model addresses 
about the same range of structural phenomena in inductive 

reasoning as the similarity-coverage model and the feature-
based model. A modification of the Bayesian model is given 
in [4]. The framework in [4] adopts a Bayesian approach 
similar to [8], but emphasizes the importance of modeling the 
form and the origins of appropriate priors. This framework 
includes two components: a Bayesian engine for inductive 
inference, and a language for specifying relevant aspects of 
domain theories and using those theories to generate prior 
probability distributions for the Bayesian inference engine. 
The Bayesian engine reflects domain-general norms of 
rational statistical inference and remains the same regardless 
of the inductive context. Different domain theories may be 
appropriate in different inductive contexts, but they can often 
be formalized as instances of a single unifying scheme: a 
probabilistic process, such as diffusion, drift or transmission, 
defined over a structured representation of the relevant 
relations between categories, such as taxonomic or ecological 
relations. More about this framework can be found in [4]. 

D. Models based on support vector machine 

These models deal with one kind of inductive reasoning 
argument such as: 

The person likes wine. 
The person doesn’t like beer. 
---------------------------------------  
The person likes champagne. 
In this type of argument, its strength depends mainly on the 

entities in each sentence since these sentences share the same 
basic predicate. The study in [9] examines the impact of risk 
contexts on inductive reasoning. The previous models 
discussed the context-dependency of inductive reasoning 
argument and they have only addressed the issue with 
identical entity sets and by changing the predicate. They claim 
that the information required for similarity computation 
differs for different predicates, that is, different semantic 
contexts. This model however, reports that identical 
arguments are rated differently in different situational 
contexts. Findings from this model indicate that people 
modify the same similarity information necessary to rate 
argument strengths according to the given situational context, 
which results in different ratings. Inductive reasoning in risk 
contexts is best explained by a category-based model based on 
a Support Vector Machine (SVM) which adjusts the 
similarities for positive premise entities, negative premise 
entities, and conclusion entities. The processes of inductive 
reasoning addressed in this study are assumed to involve a 
kind of similarity-based temporal categorization that utilizes 
stable semantic knowledge. For example, the temporal 
category that “Mr. A likes” can be formed from positive and 
negative premise entities (e. g. “Mr. A likes steak”, “Mr. A 
doesn’t like Japanese noodle” → “steak” and “Japanese 
noodle”) and applied in making estimations about the 
likelihood of the conclusions (e. g., “Mr. A likes pork → 
highly likely) based on the similarity of “pork” with “steak” 
and the dissimilarity with “Japanese noodle”. This model is 
based on three assumptions [10]: internal representation 
assumptions, retrieval assumptions, and response selection 
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assumptions. The internal representation assumption explains 
the way in which the stimuli and the contrasting categories are 
represented. The entities of premises and conclusions are 
assumed to be prototypes in a knowledge space. The retrieval 
assumption provides a description of the information that 
must be collected before a response can be made. In this 
model the similarities between the premise and conclusion 
entities are described by a nonlinear function of simple 
Euclidean distances. Kernel functions are assumed to be the 
nonlinear similarity functions between the premise and the 
conclusion entities. Thus, these proposed models show that 
people can temporally discriminate natural language concepts 
within a complex semantic structure according to various 
combinations of positive and negative premise entities. More 
about this can be found in [11]. The response selection 
assumption provides a description about how people select a 
response after all the relevant information has been collected. 
In this model, participants’ responses are assumed to be 
influenced by the desire to optimize response utility, that is, to 
choose a response that might not lead to score decreases. 
Since score decreases might cause the low evaluation of the 
participants’ ability, people try to avoid such a score 
decreasing risk by adjusting the relevant information collected 
for the task response. The response decision is assumed to be 
based on similarity estimations which are themselves biased 
by “situational” contexts that lead to the participant’s risk 
aversion strategies. Two kinds of models based on SVM are 
proposed in [9,12]. The first model processes feature-based 
representations, while the other processes category-based 
representations. The likelihood of a conclusion including 
entity is represented by the following discrimination function 
constructed from an SVM, based on Gaussian kernel 
functions: 
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Depending on which model is used, dj+ and dj−  have 
different representations. In feature-based version of models 
these parameters are functions for word distance based on the 
feature words [13,14]. These words are denoted with Ak. In the 
category-based version of models these are word-distance 
functions based on the latent classes (Ck). In these models the 
mechanism underlying the risk context effects in inductive 
reasoning is explained by similarity adjustment based on risk 
aversion strategies toward social evaluation context. SVM was 
also used in [15], where we can find an extended use of the 
induction models based on SVM. 

IV. CONCLUSION 

In this paper we gave a review of the basic models of 
inductive reasoning. The effects of data in human inductive 
reasoning, presented in the paper, present a key element of all 
the models of inductive reasoning. These effects connect the 

psychology of human reasoning and the computational models 
for inductive reasoning. All models in this paper are based on 
some effect or on multiple effects, and that was the reason we 
included exactly those models. Some of the models present a 
basis for more complex research in this field, and may be used 
like a good start for gaining new, upgraded models. In that 
sense a possible continuation of this work might be a 
computer implementation of some of the considered models 
of inductive reasoning. 
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