

Evaluation of Application Level Mechanism for Reliable
Smart Objects Communications

Ivaylo Atanasov1, Martin Ivanov2, Evelina Pencheva1

Abstract – In this paper an application level mechanism for
reliable message transfer in communications between smart
objects in internet is proposed. The mechanism is based on
transaction processing. Analytical relationships are derived and
the performance of transaction processing is evaluated.

Keywords – Internet of things, reliable message transfer,
transaction processing

I. INTRODUCTION

Smart objects are able to communicate with the physical
world by performing limited forms of computations as well as
to communicate with the outside world and other smart
objects [1]. Communications between smart objects in web
are conceptualized in the term “Internet of things” (IoT) [2].
The usage of Internet protocols for interconnecting smart
objects is driven by the challenges of smart object networks
[3].

Interoperability is an essential requirement for the smart
object networks and it suits very well to the Internet protocols,
which run over link layers with different characteristics. The
Internet Protocol (IP) provides interoperability with existing
networks, applications, and protocols, and consequently, the
IP-enabled smart objects can interoperate with large number
of servers, computers, and devices.

It is expected for the smart objects networks to evolve in
time, allowing future applications to take full advantage of the
technology. The Internet architecture allows application layer
protocols to evolve independently of the underlying network
protocols.

Smart objects may use different wireless and wired
communication technologies. Because of its layered
architecture IP allows diversity of communication
technologies [4].

As a pervasive technology, smart objects networks need to
feature scalability and the Internet architectures have been
proven regarding scalability.

For smart object there is not standard transport protocol. IP-
enabled smart objects may communicate with other systems
and devices that run IP, making use of different transport
protocols.

For smart objects networks Transmission Control Protocol
(TCP) provides reliable transport and thus reducing the

application complexity. TCP is a complex protocol and has
performance problems for high throughput data. If high
throughput requirements are not important for smart object,
some of the TCP mechanisms such as sliding window
algorithm and congestion control are not necessary. TCP
headers are large, but a compression may be used. Many TCP
solutions for smart objects are designed for resource
constraints, such as the delayed ACK mechanism.

User Datagram Protocol (UDP) provides a best-effort
datagram delivery service i.e. the underlying IP network does
its best to deliver the datagrams, but there is no guarantee that
the datagrams are delivered at the destination. UDP has a very
low overhead for both header size and protocol logic. This
means that both the packet transmission and reception
consume less energy which is in favor of the application layer
data. UDP is well suited to traffic with low reliability
demands, e.g. for smart objects that report data periodically
within a system for home automation or eco monitoring. Since
data are sent periodically, a casual packet lost is not critical as
the new reading will be sent soon enough anyway.

For smart objects, any of UDP or TCP may be used and the
application requirements determine the choice of transport
protocol [5], [6].

In this paper, we present a simple application level
mechanism for reliable smart objects communication that is
based on transaction. The application protocol consists of
application logic and transaction processing functionality. The
transaction processing provides reliable message transfer by
the use of retransmissions. We derive analytical dependences
and evaluate the proposed mechanism performance.

II. APPLICATION LEVEL MECHANISM FOR
TRANSACTION PROCESSING

The application logic may be described as a set of fairly
independent processes with a loosely coupling between them.
The processes communicate by exchange of messages. Any
exchange of messages is organized in requests and responses.
A request with all the responses associated with it forms a
transaction. In the transaction-oriented approach, protocol
requests flow from clients to a server, and the responses flow
the opposite way. The reliable transmission of protocol
messages within the transaction is provides by a
retransmission mechanism. The transaction processing filters
retransmissions in the receiving end in order to prevent the
application logic from multiple message receptions.

The transactions implement a two-way handshake.
Requests are retransmitted by the client transactions at
specified intervals (Timer Tre-req) if a response has not been
received. The duration of the whole transaction is limited
(Timer Treq). The server transaction will retransmit responses

1The authors are with the Faculty of Telecommunications at
Technical University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000,
Bulgaria, E-mail: iia@tu-sofia.bg.

2The author is with the Faculty of Electronics at Technical
University of Varna, 1 Studentska Str, Varna 9010, Bulgaria, e-mail:
martinivanov@tu-varna.bg.

67

if a new request arrives. Once a response has been sent by the
server transaction, it will still wait for server transaction timer
Tre-res expiry to see if it receives a new retransmission of the
request, which would indicate that the response has not
arrived successfully. When the client transactions receives a
response it terminates any additional response retransmissions
related to the request are disgarded. There are two queues at
the client transaction side: Requestqueue is used to store the
requests, and Timerqueue is used to store the retransmission
timers.

Fig. 1 shows the queuing dynamics of the client transaction.
The application logic sends original requests which are
forwarded to Requestqueue. At the same time, the client
transaction starts the timer Treq which limits the duration of
the whole transaction. The request retransmission timer Tre-req
is also set. If no response is received and the timer Tre-req
expires, then the client transaction retransmits the request and
fires the timer Tre-req again. If a response is received, the client
transaction resets both timers Treq and Tre-req, forwards the
response to the application logic.

Fig. 1. Queuing dynamics at the client transaction

Fig.2 shows the queuing dynamics at the server transaction.
A received request is forwarded to the application logic. A
response sent by the application logic is put into the response
queue (Responsequeue) for transmission to the client side. If a
retransmitted request is received, the respective response is
put into the Responsequeue for retransmission.

Fig. 2. Queuing dynamics at the server transaction

III. PROBABILISTIC TRANSACTION EVALUATION

Successful transaction is the transaction for which both the
request and the response have arrived successfully.

Fig.3 shows the trellis diagram of the transaction states
where Ploss is the probability of message loss (request or
response). In Fig.3, S0 is the initial state and the state S3
corresponds to the case where two consecutive request
transmissions failed, and the third one leads to a successful
response.

Fig. 3. Trellis diagram of transaction states limited to 3 requests
transmissions

Let us denote by k

trans
P the probability of successful

transaction after k request sending (i.e. to reach state Sk) is:

 1)2(12)1(−−−−= k
loss

Pk
loss

P
loss

Pk
trans

P . (1)

The probability),(N
loss

P
T

P of successful transaction for

any of the N possible request transmissions is as follows:
1)2(

1

1.2)1(
1

),(−−
=

−−=
=

= ∑∑ k
loss

P
N

k

k
lossP

loss
P

N

k

k
transPN

loss
P

T
P (2)

Fig.4 shows the dependence of k
trans

P as a function of

Ploss.

Fig. 4. Probability of successful transactions with just k request
transmissions as a function of probability of message loss

Fig.5 shows the dependence of the probability of successful

client transaction as a function of the probability of the loss of
messages. In the figure, case (a), (b) and (c) correspond to the
values of N = 5, 4, 3 in (2), case (d) and (e) show the
difference in the probability of a successful transaction,
respectively, for N = 5 and 43, and for N = 4 and 3.

Fig.5 highlights the values of probability of successful
transaction for message loss probability of 0.3, respectively

S0

S1

Ploss

Ploss

Ploss

Ploss

Ploss

Ploss

1 -Ploss 1 -Ploss

1 -Ploss

1 -Ploss
S2

S3

F
Transaction fails

1 -Ploss

Application logic

Request

Request Response

Response

Transmission
Reception

Responsequeue for retransmitted
request

Application logic

Set timer Treq (only for the
original request), SetTre-req

Transmission

Timer Tre-req
expires

Reception

Request

Request Response

Reset timer
Treq, Tre-req

Error Response

Timer Treq
expires

Tqueue Requestqueue

Retransmitted
request

(а) k=1
(b) k=2
(c) k=3
(d) k=4
(e) k=5
(f) k=6

loss
P

(а)

(b
 (c)

(d) (e) (f)

k
trans

P

68

for 5 requests transmissions 98223.0),(=N
loss

P
T

P , for 4

requests transmissions 96522.0),(=N
loss

P
T

P and for 3

requests transmissions 93191.0),(=N
loss

P
T

P .

Fig. 5. Dependence of the overall probability of a successful
transaction as a function of probability of message loss

Accordingly, the difference between the probabilities for 5

and 4 requests transmissions is 0.03331, and the difference
between the probabilities for 4 and 3 requests transmissions is
0.05032.

One of the parameters to assess the effectiveness of the
proposed mechanism for transaction processing, is its latency.

Let d denotes the delay in message transmission (request or
response). If the first request transmission is unsuccessful, the
request is retransmitted after expiry of timer T1. If the k -th
request transmission is unsuccessful, the request is
retransmitted after expiry of timer Tk.

The delay introduced to reach a state of successful
transactions with k request transmissions is:
 kк Td += .2δ . (3)

If the retransmission timer has a constant value of T, then
 ТкTk).1(−= . (4)
and the delay introduced to reach a state of successful
transactions with k number of request transmissions is:
 Tкdк)1(.2 −+=δ . (5)

The probability estimation of the average latency of
successful transaction in exactly k requests transmissions is
expressed as follows:

112)2.().1)().1(.2(

.),,(
−− −−−+

==∆
k

loss
k

lossloss

k
transklossк

PPPTkd

PTdP δ . (6)

Hence, the probability estimation of the average latency of
successful transaction is:

112

1

1

)2.().1)().1(.2(

),,(),,,(

−−

=

=

−−−+

=∆=

∑

∑
k

loss
k

lossloss

N

k

loss

N

k
kloss

PPPTkd

TdPTdNPD
 . (7)

Let fix the delay in the network d = 50 ms, and the value of
the retransmission timer is T = 800 ms.

The family of curves for k = 1.. 6, shown in Fig.6, present
the probability estimation of the average latency of successful
transaction in exactly k requests transmissions.

The family of curves for N = 4 ..7, shown in Fig.7, present

the probability estimation of the average latency of successful
transaction where possible request transmissions in a
transaction are N and the value of the request retransmission
timer is constant.

The family of curves, shown in Fig.8, present the
probability estimation of the average latency of successful
transaction, where N = 4 and the value of the retransmission
timer T varies from 300 ms to 800 ms.

.

If the request retransmissions take place due to congestion

in the network, then it makes sense for the request
retransmission timer to increase at each retransmission.

In case of network congestion, the increase of the
retransmission timer value for each subsequent retransmission
would increase the probability of a successful transaction.

Let us denote by I(s) a function that has value 1 if s is true,
or the value 0 otherwise. If the value of the request
retransmission timer T doubles with each successive request
retransmission, then the probability estimation of the latency
of successful transaction with N possible transmission of the
requests is:

(а))5,(
loss

P
T

P

(b))4,(
loss

P
T

P

(c))3,(
loss

P
T

P

(d))5,(
loss

P
T

P -

)4(PP

loss
P

),(N
loss

P
T

P

),,(TdPlossк∆

k=1

k=2 k=3 k=4
k=5 k=6

loss
P

Fig. 6. Probability estimation of the average latency of
successful transaction for exactly k requests

transmissions (d = 50 ms, T = 800 ms)

loss
P

N = 6

N = 5

N = 4

N = 3

),,,(TdNPD loss

Fig. 7. Probability estimation of the average latency of
successful transaction with N possible requests

transmissions (d = 50 ms, T = 800 ms)

69

1121

1

1

)2.().1)(2.).1(.2(

),,(),,,(

−−−

=

=

−−>+

=∆=

∑

∑
k

loss
k

lossloss
k

N

k

loss

N

k
kloss

PPPTkId

TdPTdNPD
 (8)

The value of the request retransmission timer can be
limited. The smaller upper threshold of the retransmission
timer leads to transaction behavior that resembles the constant
value of the retransmission timer. The bigger upper threshold
of the retransmission timer leads to transaction behavior that
is similar to the behavior of non-limited value of the
retransmission timer.

Let us denote by L the maximum value of the request
retransmission timer. Then),,(LTkΦ represents a function
defined in the following manner:

 0 , where 1≤k
),,(LTkΦ = kT 2. , where k is such that LТ k ≤2. (9)
 L, otherwise.

Then the probability estimation of successful transaction
latency with a doubling of the retransmission timer for any
subsequent transmission up to a maximum value L is given by
the following:

112

1
)2.().1))(,,(.2(

),,,,(

−−

=

−−Φ+

=

∑ k
loss

k
lossloss

N

k

loss

PPPLTkd

LTdNPD
 (10)

Fig.9 and Fig.10 show a comparison of the probability
estimation of the successful transaction latency for the case of
a constant value of the retransmission timer for the query (a),
the case of a exponential increase of the retransmission timer
value without limitation on the maximum value (b), and the
case (c) with maximum value of upper requests retransmission
timer L respectively of 1500 ms and 3000 ms. In the figures,
the fixed number of request retransmissions N is 6.

IV. CONCLUSION

In this paper an application level mechanism for reliable
message transfer in internet-based communications between
smart objects is proposed. The mechanism is based on

transactions and its performance is evaluated. The results
show that when determining the threshold for the maximum
value of the request retransmission timer, a compromise
between a shorter duration of successful transaction with a
focus on request retransmissions in fixed intervals and greater
probability of successful transaction with exponential increase
of time for request retransmission might be sought.

ACKNOWLEDGEMENT

The work is under the support of the research project
№141ПР004-7 funded by RDS, TU-Sofia.

REFERENCES

[1] J. Vasseur, A. Dunkels, Interconnecting Smart Objects with IP.
The Next Internet. Morgan Kaufmann, 2010.

[2] L. Atrozi, A. Piera, G. Morabito, “The Internet of Things: A
survey”, Computer Networks, vol. 54, pp. 2787-2805, 2010.

[3] H. Chaouchi “Introduction to the Internet of Things”. In H.
Chaouchi The Internet of things. Connecting Objects to the
Web. Wiley, 2010.

[4] M. Ivanov, R. Dimova, “PMU traffic evaluation in wide area
monitoring and control systems”, Computer Sciences and
Communications, BFU, vol 3, №1, 2014, pp 3-11.

[5] K. Elgazzar, M. Aboelfotoh, P. Martin, H. Hassanein,
“Ubiquitous Health Monitoring Using Mobile Web Services”,
Procedia Computer Science, vol.10, pp.332-339, 2012.

[6] L. Tarouco, et. al. “Internet of Things in healthcare:
Interoperability and security issues”, IEEE ICC’2012,
Conference Proceedings, pp. 6121-6125, 2012.

),,,(TdNPD loss

loss
P

T=800ms
T=700ms

T=600ms

T=500ms

T=400ms

T=300ms

Fig. 8. Probability estimation of the average latency of
successful transaction (d = 50 ms, N = 4)

),,,,(LTdNPD loss

),,,,(LTdNPD loss
Fig. 9. Probability estimation of the average latency of

successful transaction ((a) Т=const; (b) T= kT 2. ;
(c)),2.min(LТT k= , L = 1500 ms

Fig. 10. Probability estimation of the average latency of

successful transaction ((a) Т=const; (b) T= kT 2. ;
(c)),2.min(LТT k= , L = 3000 ms

loss
P

loss
P

),,,,(LTdNPD loss

(c)

(b)
(a)

(c)

(b)

(a)

70

http://www.sciencedirect.com/science/article/pii/S1877050912004012%23%23

