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Abstract – In this paper an application level mechanism for 
reliable message transfer in communications between smart 
objects in internet is proposed. The mechanism is based on 
transaction processing. Analytical relationships are derived and 
the performance of transaction processing is evaluated. 
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I. INTRODUCTION 

Smart objects are able to communicate with the physical 
world by performing limited forms of computations as well as 
to communicate with the outside world and other smart 
objects [1]. Communications between smart objects in web 
are conceptualized in the term “Internet of things” (IoT) [2]. 
The usage of Internet protocols for interconnecting smart 
objects is driven by the challenges of smart object networks 
[3]. 

Interoperability is an essential requirement for the smart 
object networks and it suits very well to the Internet protocols, 
which run over link layers with different characteristics. The 
Internet Protocol (IP) provides interoperability with existing 
networks, applications, and protocols, and consequently, the 
IP-enabled smart objects can interoperate with large number 
of servers, computers, and devices. 

It is expected for the smart objects networks to evolve in 
time, allowing future applications to take full advantage of the 
technology. The Internet architecture allows application layer 
protocols to evolve independently of the underlying network 
protocols.  

Smart objects may use different wireless and wired 
communication technologies. Because of its layered 
architecture IP allows diversity of communication 
technologies [4]. 

As a pervasive technology, smart objects networks need to 
feature scalability and the Internet architectures have been 
proven regarding scalability. 

For smart object there is not standard transport protocol. IP-
enabled smart objects may communicate with other systems 
and devices that run IP, making use of different transport 
protocols.  

For smart objects networks Transmission Control Protocol 
(TCP) provides reliable transport and thus reducing the 

application complexity. TCP is a complex protocol and has 
performance problems for high throughput data. If high 
throughput requirements are not important for smart object, 
some of the TCP mechanisms such as sliding window 
algorithm and congestion control are not necessary. TCP 
headers are large, but a compression may be used. Many TCP 
solutions for smart objects are designed for resource 
constraints, such as the delayed ACK mechanism.   

User Datagram Protocol (UDP) provides a best-effort 
datagram delivery service i.e. the underlying IP network does 
its best to deliver the datagrams, but there is no guarantee that 
the datagrams are delivered at the destination. UDP has a very 
low overhead for both header size and protocol logic. This 
means that both the packet transmission and reception 
consume less energy which is in favor of the application layer 
data. UDP is well suited to traffic with low reliability 
demands, e.g. for smart objects that report data periodically 
within a system for home automation or eco monitoring. Since 
data are sent periodically, a casual packet lost is not critical as 
the new reading will be sent soon enough anyway.  

For smart objects, any of UDP or TCP may be used and the 
application requirements determine the choice of transport 
protocol [5], [6].  

In this paper, we present a simple application level 
mechanism for reliable smart objects communication that is 
based on transaction. The application protocol consists of 
application logic and transaction processing functionality. The 
transaction processing provides reliable message transfer by 
the use of retransmissions. We derive analytical dependences 
and evaluate the proposed mechanism performance. 

II. APPLICATION LEVEL MECHANISM FOR 
TRANSACTION PROCESSING 

The application logic may be described as a set of fairly 
independent processes with a loosely coupling between them. 
The processes communicate by exchange of messages. Any 
exchange of messages is organized in requests and responses. 
A request with all the responses associated with it forms a 
transaction. In the transaction-oriented approach, protocol 
requests flow from clients to a server, and the responses flow 
the opposite way. The reliable transmission of protocol 
messages within the transaction is provides by a 
retransmission mechanism. The transaction processing filters 
retransmissions in the receiving end in order to prevent the 
application logic from multiple message receptions.  

The transactions implement a two-way handshake. 
Requests are retransmitted by the client transactions at 
specified intervals (Timer Tre-req) if a response has not been 
received. The duration of the whole transaction is limited 
(Timer Treq). The server transaction will retransmit responses 
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if a new request arrives. Once a response has been sent by the 
server transaction, it will still wait for server transaction timer 
Tre-res expiry to see if it receives a new retransmission of the 
request, which would indicate that the response has not 
arrived successfully. When the client transactions receives a 
response it terminates any additional response retransmissions 
related to the request are disgarded. There are two queues at 
the client transaction side: Requestqueue is used to store the 
requests, and Timerqueue is used to store the retransmission 
timers. 

Fig. 1 shows the queuing dynamics of the client transaction. 
The application logic sends original requests which are 
forwarded to Requestqueue. At the same time, the client 
transaction starts the timer Treq which limits the duration of 
the whole transaction. The request retransmission timer Tre-req 
is also set. If no response is received and the timer Tre-req 
expires, then the client transaction retransmits the request and 
fires the timer Tre-req again. If a response is received, the client 
transaction resets both timers Treq and Tre-req, forwards the 
response to the application logic.  
 

  
 

Fig. 1. Queuing dynamics at the client transaction 
 

Fig.2 shows the queuing dynamics at the server transaction. 
A received request is forwarded to the application logic. A 
response sent by the application logic is put into the response 
queue (Responsequeue) for transmission to the client side. If a 
retransmitted request is received, the respective response is 
put into the Responsequeue for retransmission. 

 

 
 

Fig. 2. Queuing dynamics at the server transaction 

III. PROBABILISTIC TRANSACTION EVALUATION  

Successful transaction is the transaction for which both the 
request and the response have arrived successfully.  

Fig.3 shows the trellis diagram of the transaction states 
where Ploss is the probability of message loss (request or 
response). In Fig.3, S0 is the initial state and the state S3 
corresponds to the case where two consecutive request 
transmissions failed, and the third one leads to a successful 
response. 

 
 

Fig. 3. Trellis diagram of transaction states limited to 3 requests 
transmissions 

 
Let us denote by k

trans
P the probability of successful 

transaction after k request sending (i.e. to reach state Sk) is: 
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Fig.4 shows the dependence of k
trans

P  as a function of 

Ploss. 

 
 

Fig. 4. Probability of successful transactions with just k request 
transmissions as a function of probability of message loss 

 
Fig.5 shows the dependence of the probability of successful 

client transaction as a function of the probability of the loss of 
messages. In the figure, case (a), (b) and (c) correspond to the 
values of N = 5, 4, 3 in (2), case (d) and (e) show the 
difference in the probability of a successful transaction, 
respectively, for N = 5 and 43, and for N = 4 and 3.  

Fig.5 highlights the values of probability of successful 
transaction for message loss probability of 0.3, respectively 
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Fig. 5. Dependence of the overall probability of a successful 
transaction as a function of probability of message loss 

 
Accordingly, the difference between the probabilities for 5 

and 4 requests transmissions is 0.03331, and the difference 
between the probabilities for 4 and 3 requests transmissions is 
0.05032. 

One of the parameters to assess the effectiveness of the 
proposed mechanism for transaction processing, is its latency. 

Let d denotes the delay in message transmission (request or 
response). If the first request transmission is unsuccessful, the 
request is retransmitted after expiry of timer T1. If the k -th 
request transmission is unsuccessful, the request is 
retransmitted after expiry of timer Tk. 

The delay introduced to reach a state of successful 
transactions with k request transmissions is: 
 kк Td += .2δ  .  (3) 

If the retransmission timer has a constant value of T, then 
 ТкTk ).1( −=  .  (4) 
and the delay introduced to reach a state of successful 
transactions with k number of request transmissions is: 
 Tкdк )1(.2 −+=δ  .  (5) 

The probability estimation of the average latency of 
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expressed as follows: 
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Let fix the delay in the network d = 50 ms, and the value of 
the retransmission timer is T = 800 ms. 

The family of curves for k = 1.. 6, shown in Fig.6, present 
the probability estimation of the average latency of successful 
transaction in exactly k requests transmissions. 

 

 
 
 
The family of curves for N = 4 ..7, shown in Fig.7, present 

the probability estimation of the average latency of successful 
transaction where possible request transmissions in a 
transaction are N and the value of the request retransmission 
timer is constant.  

The family of curves, shown in Fig.8, present the 
probability estimation of the average latency of successful 
transaction, where N = 4 and the value of the retransmission 
timer T varies from 300 ms to 800 ms. 

 

. 
 
 
 

 
If the request retransmissions take place due to congestion 

in the network, then it makes sense for the request 
retransmission timer to increase at each retransmission. 

In case of network congestion, the increase of the 
retransmission timer value for each subsequent retransmission 
would increase the probability of a successful transaction.  

Let us denote by I(s) a function that has value 1 if s is true, 
or the value 0 otherwise. If the value of the request 
retransmission timer T doubles with each successive request 
retransmission, then the probability estimation of the latency 
of successful transaction with N possible transmission of the 
requests is: 
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Fig. 6. Probability estimation of the average latency of 
successful transaction for exactly k requests 

transmissions (d = 50 ms, T = 800 ms) 
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Fig. 7. Probability estimation of the average latency of 
successful transaction with N possible requests 

transmissions (d = 50 ms, T = 800 ms) 
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The value of the request retransmission timer can be 
limited. The smaller upper threshold of the retransmission 
timer leads to transaction behavior that resembles the constant 
value of the retransmission timer. The bigger upper threshold 
of the retransmission timer leads to transaction behavior that 
is similar to the behavior of non-limited value of the 
retransmission timer. 

Let us denote by L the maximum value of the request 
retransmission timer. Then ),,( LTkΦ  represents a function 
defined in the following manner: 

                          0 , where 1≤k  
  ),,( LTkΦ =   kT 2. , where k is such that LТ k ≤2.         (9) 
                          L, otherwise. 

Then the probability estimation of successful transaction 
latency with a doubling of the retransmission timer for any 
subsequent transmission up to a maximum value L is given by 
the following: 
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Fig.9 and Fig.10 show a comparison of the probability 
estimation of the successful transaction latency for the case of 
a constant value of the retransmission timer for the query (a), 
the case of a exponential increase of the retransmission timer 
value without limitation on the maximum value (b), and the 
case (c) with maximum value of upper requests retransmission 
timer L respectively of 1500 ms and 3000 ms. In the figures, 
the fixed number of request retransmissions N is 6. 

IV. CONCLUSION 

In this paper an application level mechanism for reliable 
message transfer in internet-based communications between 
smart objects is proposed. The mechanism is based on 

transactions and its performance is evaluated. The results 
show that when determining the threshold for the maximum 
value of the request retransmission timer, a compromise 
between a shorter duration of successful transaction with a 
focus on request retransmissions in fixed intervals and greater 
probability of successful transaction with exponential increase 
of time for request retransmission might be sought. 
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Fig. 10. Probability estimation of the average latency of 

successful transaction ((a) Т=const; (b) T= kT 2. ;     
(c) ),2.min( LТT k= , L = 3000 ms 
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