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Abstract – In this paper an optimization of quasilogarithmic 
quantizer has been done for a memoryless Laplacian source. We 
propose new, simple iterative method for determination of 
compression factor µ and support limit xmax that gives the highest 
signal-to-quantization noise ratio SQNR. The optimization 
procedure is described in detail. Numerical results show the 
suitability of this method. 
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I. INTRODUCTION 

Nonuniform quantization has smaller decision intervals 
where the probability of input signal is high and larger 
intervals otherwise. To determine these decision intervals one 
of approaches is based on companding technique where an 
input signal is compressed, after that uniformly quantized and 
lastly expanded. This means that nonuniform quantizer can be 
implemented as a series connection of the compressor, the 
uniform quantizer and expandor, as shown in Figure 1. 
Companding quantizers can be optimal and logarithmic, and 
within the logarithmic there are A and µ-logarithmic 
quantizers. The companding concept is useful in analyzing 
nonuniform quantizers with a large number of levels [1]. 

 

 

Fig. 1. Companding quantizer 
 

Logarithmic companding quantizers is mainly used when it 
is necessary to provide approximately constant signal-to-
quantization nose (SQNR) in wide range of input signal 
variance, i.e., when it is necessary that the SQNR is not 

dependent on standard deviation. This is the case with non-
stationary signals, which include the speech signal [1]. 

In this paper, emphasis is placed on designing 
quasilogarithmic (µ-logarithmic) quantizer, whose 
compression factor µ significantly affects SQNR. The 
increase of the compression factor increases the range of 
variances in which the SQNR is approximately constant, but 
in the other hand reduces the value of SQNR. In order to 
provide robustness in a wide range of variance, in the ITU-T 
standard G.711 compression factor is 255 [1]. 

This paper explains determination of compression factor µ 
for which can be obtained the maximal value for the SQNR in 
a case when a memoryless Laplacian source is quantized. The 
obtained solution can be used in processing the speech 
signals, because these signals can be modeled using Laplacian 
probability density function [1]. The problem of determining 
the optimal compression factor with respect to SQNR was 
discussed in [2] too, where the first derivate of signal 
distortion in respect to µ was set to zero. Equation was 
directly solved by using iterative Muller’s method [2].  

The goal of this paper is to determine a simpler iterative 
method for compression factor optimization which gives 
results with same accuracy. In this paper, like in [2], we start 
from expression for total quantizer distortion, which we 
differentiate over compression factor µ and obtaining complex 
transcendental equation. We study the problem of solving the 
obtained transcendental equation and notice that it is possible 
to introduce a substitution which this transcendental equation  
transforms into an iterative quadratic equation whose 
solutions can be easily determined. We determine the 
solution, replace the introduced substitution and obtain simple 
iterative equation for the determination of the optimal value 
for compression factor µ. One of the parameters of iterative 
equation is support limit of quantizer and it must be correctly 
determined due to its influence on the SQNR [3], [4], [5], [6]. 
Wider support gives smaller overload distortion, but larger 
granular distortion and vice versa. In [5], for quasilogarithmic 
quantizer a formula for determination of the quantizer support 
limit was derived. An application of this formula in [2] gave 
satisfactory results, so in this paper the same formula is used 
for determining the quantizer support limit. As the formula for 
support limit defining does not depend just on number of 
quantization levels N, but also on value of compression factor 
µ, this led us to iterative method whose iteration consists of 
two steps. At the first step, for the given support limit we 
determine new value for µ utilizing the equation derived in 
this paper, and then at the second step, for the obtained value 
of µ we determine support limit by the method given in [5]. 
Process is iteratively repeated until the absolute error between 
distortions in adjacent iterations is greater than pre-determined 
threshold. We show that this condition is satisfied in two 
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iterations. We determine the optimal compression factor µand 
the optimal support limit xmax for the large numbers of levels 
N (128, 256, 512). The performances of quantizer for the 
number of levels N = 256, obtained by the proposed iterative 
method are compared with those performances from [2]. 

The paper is organized as follows. In Section IIa 
description of companding quatizer for a Laplacian source is 
given and the performances and approximations that are 
introduced are presented. In Section III numerical results are 
shown and discussion of these results is given. In Section IV 
the contributions of the paper are summarized. 

II. COMPANDING QUANTIZER FOR LAPLACIAN 
SOURCE 

The process of quantization is the mapping Q([xi-1,xi)→yi, 
i=1,...,N, where N is the number of quantizer levels, xi, 
i=0,...,N, are decision thresholds, and yi,i=1,...,N, are 
representation levels. When quantization is performed, an 
irreversible error due to rounding of the current value of input 
sample on representation level is made. This error is called 
quantization error. The average value of quantization error is 
defined as distortion. To calculate the distortion it is necessary 
to determine the actual values of samples and the 
representation levels at which these samples are rounded. 
Distortion is defined by expression [1]: 
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For a symmetric source densities with infinite support, 
distortion D is equal to the sum of granular and overload 
distortions D=Dg+Do, which are defined as: 
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wherexN-1 = xmax represents a quantizer support limit and 
xN = ∞. In quasilogarithmic quantization a compressor 
function used for signal compression is defined by: 
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whereµ is compression factor [1]. The granular distortion (2) 
for companding quantizer can be defined by means of Benet’s 
integral in following way [1], [2]: 
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where p(x) is the probability density function of the signal. In 
this paper we consider Laplacian probability density function 
by which the speech signals can be modeled [1]. 
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By substituting (6) in (5) and (3)and using the approximation 
yN ≈ xmax[2], [3], we can calculate the granular and overload 
distortion: 
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and after that, the total distortion D(Qµ) = Dg(Qµ) + Do(Qµ). 
As we design companding quantizer for unit varinaceσ2 = 1, 
the expression for total distortion becomes: 
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By equalizing the first derivate of distortion (9) in respect to 
µwith zero, we obtain the following equation: 
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In equation (10) we introduce the substitution: 

 ( ) )1ln(1
0 +

+
= µ

µ
µµt  (11) 

which reduces transcendental equation (10) to iterative 
quadratic equation: 
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This iterative quadratic equation has two solutions: 
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but we consider only solution that has physical sense, that is 
solution that gives positive values for compression factor.  

Eq. (13) shows that the compression factor µ depends on 
the support limit xmax. We determine optimal support of 
quantizer utilizing method from [5]. The analysis conducted 
in [5] showed that for given N, the optimization of the support 
limit can be performed by means of following equation: 
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In such way we obtain the system of two nonlinear equations 
(see Eqs. (13) and (14)) that can be solved iteratively. 
Actually, we replace t0(µ(i-1)) with (11) in (13) and µ with µ(i) 
in (14) and thus formulate a new iterative method for the 
determination of the optimal compression factor µ and the 
optimal support limit xmax, that consists from two steps: 
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Quality of quantized signal is usually expressed through 
signal-to-quantization noise ratio which is defined as: 
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III. ITERATIVE METHOD FOR THE OPTIMAL 
COMPRESSION FACTOR DETERMINING AND 

NUMERICAL RESULTS 

In this chapter a detailed description of algorithm of the 
new iterative method for the optimization of quasilogarithmic 
quantizer for Laplacian source is given. Optimization of 
compression factorµand support limit xmax consists of 
following steps: 

1. Set the iteration counter to zero: i = 0. 
2. Set the initial value for the compression factor µ(i)=128, 

and the initial value for the support limit of quantizer 
xmax(i) using expression (14), and after that, using 
expression (9) calculate the distortion D(i). 

3. Storage the values of compression factor, support limit and 
distortion before the calculation of new values: μ(i-1) = μ(i), 
xmax

(i-1) = xmax
(i),D(i-1) = D(i). 

4. Increase the iteration counter for 1: i = i+1. 
5. For given xmax

(i-1),using the equation (15) calculate the 
compression factor μ(i). 

6. For given μ(i), using the equation (16) calculate the support 
limit of quantizer xmax

(i). 
7. By using equation (9) determine distortion D(i) and 

examine whether the difference which has distortion in 
adjacent iterations of algorithm is greater than a given 
threshold ε,or if δ = D(i) - D(i-1) >ε back to step 3, 
otherwise go to step 8. 

8. Determine the optimal values of compression factor and 
support limit on following manner: µopt = μ(i) and 
xmax

opt = xmax
(i). 

We utilize the proposed algorithm to determine the optimal 
value of compression factor for N 128, 256 and 512. For 
threshold value for the distortion difference in two adjacent 

iterations ε we take10-4, 10-5 or 10-6 depending on the 
distortion order. In Tables I, II and III the iterative change of 
quantizer support limit xmax, compression factor µ, the 
distortion D, and the signal-to-quantization noise ratio SQNR 
is shown for N 128, 256 and 512, respectively. In Table II the 
SQNR when the compression factor is optimized utilizing the 
method from [2] is also shown. It can be seen that for all 
values of N, the optimal values of compression factor and 
support limit can be found in two iterations. It is evident that 
in comparison with the starting values of iterative method the 
SQNR sare increased for about 2dB. The result listed in tables 
also show that the optimal compression factor and support 
limit increase with N.  

For the number of level N=256, the optimal compression 
factor has value µ = 17.4769, while the optimal value of 
support limit is xmax = 9.15. In paper [2] which is based on 
Muller’s iterative method, the corresponding values are 
compression factor µ = 16.9227 and support region threshold 
xmax= 9.12. The value of the SQNR obtained in the second 
iteration of new iterative method is SQNR= 40.4791 [dB], 
while in the 9th iteration of Muller’s iterative method this 
value is SQNR = 40.4835 [dB]. Comparing these results, we 
conclude that the SQNR obtained with the Muller’s iterative 
method is slightly higher (for only 0.0044 dB) than that value 
obtained with new iterative method. It is evident that 
difference in SQNRs is very small, while the complexity of 
our iterative method is smaller than that in [2]. 

TABLE I 
COMPRESSION FACTOR, SUPPORT LIMIT, DISTORTION AND SQNR 

DURING ITERATIVE PROCEDURE FOR N=128,ε=10-4. 

I Μ xmax D δ SQNR 
[dB] 

0 128 8.857 5.33×10-4 - 32.729 
1 25.535 8.272 3.50×10-4 1.83×10-4 34.558 
2 15.02 8.1336 3.32×10-4 1.8×10-5 34.7831 

 

TABLE II 
COMPRESSION FACTOR, SUPPORT LIMIT, DISTORTION AND SQNR 

DURING ITERATIVE PROCEDURE FOR N=256,ε=10-5. 

i Μ xmax D δ SQNR 
[dB] 

SQNR[2] 

[dB] 

0 128 9.84 1.34×
10-4 

- 38.703  
 

40.483 1 28.269 9.28 9.32×
10-5 

4.08×
10-5 

40.305 

2 17.476 9.15 8.95×
10-5 

3.70×
10-6 

40.479 
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TABLE III 
COMPRESSION FACTOR, SUPPORT LIMIT, DISTORTION AND SQNR 

DURING ITERATIVE PROCEDURE FOR N=512,ε=10-6. 

I μ xmax D δ SQNR 
[dB] 

0 128 10.8231 3.4×10-5 - 44.677 
1 31.2025 10.2991 2.46×10-5 9.4×10-6 46.086 
2 20.0058 10.1702 2.39×10-5 7×10-7 46.22 
 
In this paper we develop the method for the optimal 

compression factor and support limit determining. We obtain 
very good results in a few iterations what makes that this 
algorithm is a simple. 

IV. CONCLUSION 

This paper proposes a new iterative method for 
optimization of µ companding quantizer for a Laplacian 
probability density function of unit variance. The new 
iterative method provides the optimal compression factor µ, as 
well as the optimal support limit xmax that maximize signal-to-
quantization noise ratio. Although the proposed iterative 
method solves complex system that consists of two nonlinear 
equations, it is a very simple. The iteration consists of two 
steps specified with (15) and (16), while the optimal values 
are determined in a few iterations, which points out the fast 

convergence of iterative method. The compression factor µ 
and the support limit xmax determined with this iterative 
method provides the signal-to-quantization noise ratio 
approximately equal with the signal-to-quantization noise 
ratio obtained using the iterative method for the compression 
factor optimization in [2], wherein the number of iterations is 
several times smaller. 
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