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Abstract – In this paper, we present research work related to 
processing and analysis of big trajectory data using MapReduce 
framework. We describe the MapReduce-based algorithms and 
applications implemented on Hadoop for processing spatial join 
between big trajectory data and set of POI regions and 
aggregation of join results for the purpose of movement analysis. 
The experimental evaluation and results in detecting trajectory 
patterns of particular users and the most popular places in the 
city during evening demonstrate the feasibility of our approach. 
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I. INTRODUCTION 

Advances in remote sensors, sensor networks, and the 
proliferation of location sensing devices in daily life activities 
lead to the explosion of disparate, dynamic, and 
geographically distributed spatio-temporal data in the form of 
moving object trajectories. Also, ground, air- and space-borne 
remote sensing technologies, as well as large-scale scientific 
simulations are generating petabytes of spatio-temporal data. 
These ever-increasing volumes of spatio-temporal data call for 
new models and computationally effective algorithms in order 
to efficiently store, process, analyze and visualize such a big 
data in advanced data-intensive systems and applications.  

During the last decade there has been a growing interest in 
research of parallel and distributed computing applied to the 
management, processing and analysis of massive geo-spatial 
data [1]. Advanced GIS applications, such as real-time 
disaster management, high-fidelity terrain visualization, 
global climate change analysis, traffic monitoring, etc., 
impose strengthen performance and response time constraints 
which cannot be met by contemporary Geographic 
Information Systems (GIS) and spatial databases. Thus, high-
performance computing (HPC) may meet the requirements of 
these applications [2]. Various researchers propose methods 
and techniques for high performance and parallelization in the 
processing and analysis of big geo-spatial data based on 
cluster and cloud computing [3], as well as on personal 
computers equipped with multiprocessor CPUs and massively 
parallel GPUs [4]. 

 
The recent proliferation of distributed and cloud computing 

infrastructures and platforms, both public clouds (e.g., 

Amazon EC2) and private computer clusters, has given a rise 
for processing and analysis of complex Big data. Especially, 
the implementation of MapReduce framework in the form of 
open-source Hadoop software stack, that can work on clusters 
of share-nothing machines, have set this paradigm as an 
emerging research and development topic [5]. The 
MapReduce paradigm hides details about data distribution, 
data availability and fault-tolerance, and can scale to 
thousands of computers in a cluster or cloud [6]. The 
MapReduce processing consists of two steps, namely Map and 
Reduce that are performed through map and reduce functions 
(Fig. 1). The map function receives a collection of key-value 
pairs of the form <k0,v0> and produces collection of key-
value pairs of the form <k1,v1>, <k2,v2>, <k3,v3>, ... Then, the 
framework executes a shuffle that sends each reducer a 
collection <ki, v1, v2, v3,...>, i.e., a sequence of values 
corresponding to the same key value ki. Each reducer 
generates its own output. Load balancing, data distribution 
and fault tolerance issues are handled by the MapReduce 
framework itself, thus, the programmer can focus on the 
solution to the problem.  

 

Fig. 1. MapReduce data flow [6] 
 

In this paper we implement MapReduce algorithms and 
corresponding applications using Hadoop to perform spatial 
join between trajectory data set and regions around 
points/places of interest (POI), and further aggregation of join 
results, to generate the symbolic trajectories of mobile users, 
as well as to detect the most popular POI in the city. 

The rest of the paper is structured as follows. Section II 
presents the research work related to processing and analysis 
of spatial and spatio-temporal data using MapReduce. In 
section III we describe the Hadoop implementation for 
processing big trajectory data set over set of POI in the city. 
Section IV gives the results and presents the evaluation of our 
implementation. Section V concludes the paper and gives 
directions for future research. 
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II. RELATED WORK 

Big data is currently the hottest topic for data researchers 
and scientists with huge interests from the industry and 
government agencies [7]. Recently, several initiatives related 
to Big data have emerged in the European area, such as Euro 
Lab on Big Data Analytics and Social Mining1 and the speech 
“Big data for Europe” held at ICT 2013 Event2. 

The application of high-performance parallel and 
distributed computing to big spatio-temporal data is of 
increasing interest at the European level in the European 
Space Agency3 (the "Big data from Space" event). At the 
global level, the Open Geospatial Consortium (OGC) has 
started activities focused on the geospatial aspects of big data 
Processing4, the US government has announced Big data 
R&D initiative5, and the industry has already offered 
commercial solutions, such as the IBM Big data platform6. 

Recently, there is also a growing research interest in spatio-
temporal data management, processing analysis and mining 
using MapReduce model. Cary et al. in [8] present their 
experiences in applying the MapReduce framework to 
important spatial database problems. They investigate R-tree 
bulk-loading issues in MapReduce, as well as aerial image 
quality computation and prove excellent scalability in parallel 
processing of spatial data. In [9] some efficiency issues 
regarding spatial data management are considered and an 
implementation of the all-nearest-neighbor query algorithm is 
provided. The authors present performance evaluation and 
show that the MapReduce-based spatial applications 
outperform the traditional one on a DBMS. 

Spatial joins in MapReduce are studied in [10]. The authors 
present SJMR (Spatial Join with MapReduce) algorithm that 
includes strip-based plane sweeping algorithm, tile-based 
spatial partitioning function and duplication avoidance 
technology to perform spatial join on MapReduce. The 
performance evaluation of SJMR algorithm over the real- 
world data sets shows the applicability of MapReduce for 
data-intensive spatial applications on small clusters. 

Regarding spatio-temporal and trajectory data, a first 
approach is presented in [11] where massive trajectory 
management issues are investigated. The authors present a 
new framework for query processing over trajectory data 
based on MapReduce in order to utilize the parallel processing 
power of computer clusters. They perform preliminary 
experiments showing that this framework scales well in terms 
of the size of trajectory data set [12]. 

SpatialHadoop is developed as the first extension of 
MapReduce framework with support for spatial data and 
operations [13]. SpatialHadoop employs a spatial high level 
language, a two-level spatial index structure, and three basic 
spatial operations: range queries, k-NN queries, and spatial 

1 www.sobigdata.eu 
2 http://ec.europa.eu/digital-agenda/en/news/big-data-europe 
3 http://www.congrexprojects.com/13C10/  
4 http://www.opengeospatial.org/blog/1866 
5 http://goo.gl/Rp2EZz 
6 http://www-01.ibm.com/software/data/bigdata 

join. SpatialHadoop demonstration has been done on an 
Amazon EC2 cluster against two real spatial data sets. 

Although there is a considerable recent research interest 
related to spatial and spatio-temporal data management on 
MapReduce, there is limited work performed for trajectory 
(mobility) data processing and analysis using the MapReduce 
framework. Our work aims to provide efficient MapReduce 
solution for a fundamental mobility data processing task 
related to big trajectory data sets. 

III. SPATIO-TEMPORAL DATA PROCESSING USING 
HADOOP  

The research presented in this paper aims to provide 
efficient MapReduce solution for a big mobility data 
processing and analysis task related to the trajectory data set 
representing movement of mobile users and the points/places 
of interest they visit.  

The problem we investigate in this work is actually the 
spatial join between a big set of spatio-temporal trajectory 
data T and a (potentially large) set of spatial regions R. The 
trajectory data represent the movement of a large collection of 
moving objects/mobile users tracked for a certain time period 
with the specified frequency of location updates. Each 
trajectory is seen as a collection of points <oid, xi, yi, ti>, 
where xi, yi represent the location in a geographic/geometric 
reference system and ti is the corresponding time stamp at 
which the moving object (oid) is detected at the specified 
location. Trajectories of a large number of moving objects 
collected for a long time period are characterized by large 
volumes, considered as Big data and therefore their processing 
and analysis is a challenging issue.  

Each spatial region R represents an area around point/place 
of interest (POI) visited by mobile users that stay there for 
certain time periods. A mobile user visits particular POI if its 
recording location at corresponding time stamp is within the 
area of POI; otherwise a mobile user is considered to be on a 
trip between two POIs. 

The objective of our MapReduce implementation is to 
provide: 
• Analysis of user’s movement and trajectory to detect 

places she visited and at which she stayed for a certain 
time period in the form of symbolic trajectory 
(POI1,Period1)→(POI2,Period2)→…→(POIn, Periodn). 

• Detection of the most popular places regarding the 
number of users that visited them and the total amount 
of time they stayed at a particular place. 

For such analysis we develop two MapReduce application/ 
jobs over the trajectory and region data sets.  

The first job, named SemanticTrajectory, performs 
processing and analysis of trajectory data related to mobile 
users and detects their visits to POIs. During the Map phase, 
each mapper reads its input, which is a collection of records of 
the form <oid, location, time> and performs the spatial join 
with POI data set containing records of the form <pid, area, 
attributes>, according to the spatial relation Within(location, 
area). The output of mappers is in the form <(oid, pid), time> 
where the pair (oid,pid) represents the composite key and the 
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parameter time is a value. In the Reduce phase, each reducer 
collects the identifiers of the same (oid, pid) and process and 
aggregate the time values detecting the time period(s) during 
which the object stays at the POI. The output of the reducers 
contains records of the form <oid, pid, (t1,t2)> and is written 
back to HDFS. Each record of the output represents the period 
during which a mobile user oid visits the place pid and 
represents the semantic trajectory of a mobile user, i.e. the 
pattern of her movement. 

The second MapReduce job we developed, named 
PopularPlaces, focuses on POIs and detects their popularity 
according to the number of visits and the total duration of 
stays. During the Map phase, each mapper reads the same big 
trajectory data set as the first job and performs the spatial join 
with POI data set. This time the output of mappers is in the 
form <pid, (oid, time)> where the pid represents the key and 
(oid, time) is a value. In the Reduce phase, each reducer 
collects the identifiers of the same pid, and process and 
aggregate the oid and time values detecting the total number 
of unique mobile users that visited particular place and the 
total time periods of their visits to POI. The output of the 
reducers contains records of the form <pid, nr_oid, 
total_time> and is written back to HDFS. Each record of the 
output represents the total number of users (nr_oid) that 
visited a place pid, and the total time (total_time) that these 
users stay at place pid. 

IV. EXPERIMENTAL EVALUATION 

In this section, we present the experimental evaluation of 
the implemented algorithms described previously. 

The algorithms have been implemented in Hadoop 1.2.1 
(http://hadoop.apache.org/) and experiments have been 
conducted in a pseudo-distributed mode, as well as on a small 
cluster of 5 nodes (commodity computers). A master node is a 
physical machine Pentium IV with 3 GHz CPU and 4GB of 
RAM, while worker nodes are virtual machines on a private 
IaaS cloud equipped with Intel Xeon CPU 1.6GHz Dual Core. 
Each node runs Ubuntu 12.10 Linux and have Java SDK 1.7 
installed. In addition, each node runs both a Task Tracker and 
Data Node daemon, while a master node acts as Job Tracker 
and Name Node, as well. 

In our study, implementation and evaluation we have used  
MilanoByNight simulated datasets that have been provided by 
the EveryWare Lab, University of Milano [14]. The authors of 
the data set consider a typical deployment scenario for a 
friend-finder service: a large number of young people using 
the service on a weekend night in large city like Milan. The 
simulation includes a total of 30,000 home buildings, 10,000 
office buildings and 1,000 entertainment places which 
represent a POI dataset. The trajectory data set contains 180 
million of records for 100,000 mobile users moving over the 
city of Milan while location updates are made at every 2 
minutes. The movement has been recorded over 6 hours long 
time period, from 7pm - 1 am, which amounts for about 1.3 
GB in total. 

Both data sets are stored in the HDFS. The trajectory data 
set is available to all started mappers through HDFS 
partitioning mechanism. For the POI data set, we exploit the 

features of the distributed cache mechanism supported by 
Hadoop, meaning that all POI data are available to all Map 
and Reduce tasks. Since in our setting the size of the POI 
dataset is significantly smaller than the size of the trajectories 
dataset, the distributed cache is a convenient way to share data 
across Hadoop nodes. 

We have run our MapReduce jobs on a small commodity 
cluster containing 5 nodes. The SemanticTrajectory  
MapReduce job engages 20 Map tasks and 10 reduce tasks 
that finish the job for 1 hour and 9 minutes, producing an 
output of about 56 MB stored on HDFS. The job output is in 
the form of records shown in Table I for particular users. 

TABLE I 
THE OUTPUT OF THE SEMANTICTRAJECTORY JOB 

 
OID PID Time period 

10233 2091 [09.01.2009. 07:02 - 09.01.2009. 07:52] 
10233 1362 [09.01.2009. 08:58 - 09.01.2009. 11:30] 
10233 4560 [09.01.2009. 11:45 - 10.01.2009. 00:58] 

...   
14215 3195 [09.01.2009. 07:00 - 09.01.2009. 08:30] 
14215 1587 [09.01.2009. 08:42 - 09.01.2009. 10:04] 
14215 1890 [09.01.2009. 10:24 - 09.01.2009. 12:02] 
14215 2964 [09.01.2009. 12:10 - 10.01.2009. 1:00] 

...   
14216 2694 [09.01.2009. 07:00 - 09.01.2009. 09:20] 
14216 6264 [09.01.2009. 09:34 - 09.01.2009. 11:04] 
14216 788 [09.01.2009. 11:30 - 10.01.2009. 01:00] 

…   
 

The PopularPlaces job engages the same number of Map 
and Reduce tasks and performs faster than previous one, 
completing its processing for 35 minutes. The excerpt of the 
output of the PopularPlaces job for the most popular places, 
having about 100 KB in size, is shown in Table II sorted 
according the total number of visitors. 

TABLE II 
TOP POPULAR PLACES SORTED BY 

 TOTAL NUMBER OF UNIQUE VISITORS  
 

PID Total visitors Total time 
17 1635 140892 

83 1530 117016 
136 1466 126504 
96 1458 121378 

180 1435 116852 
416 1341 113436 
97 1326 72378 

132 1317 69428 
409 1301 109586 
318 1289 121484 
276 1247 110236 
…   
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The results produced can be visually analyzed using a 
specified tool that supports analytics of spatio-temporal and 
trajectory data, such as Microsoft SQL Server Business 
Intelligence Features.  

The main objective of our work is not to evaluate the 
performance of trajectory data processing, since we 
implement our algorithms on a small, available cluster. Since 
MapReduce and its Hadoop implementation provides 
excellent scalability in terms of bigger data sets, as well as 
larger computing resources, our applications can be easily 
scaled to more powerful computer nodes than those we used 
and larger cluster with thousands of machines (e.g. Amazon 
Elactic MapReduce - EMR) to achieve much higher 
performances, that are generally expected.  

V. CONCLUSION 

In this paper, we propose the design and implementation of 
efficient algorithms for processing of spatio-temporal data that 
represent moving object trajectories using MapReduce. These 
algorithms consist of spatial join between a big trajectory data 
set and a POI (region) data set, and appropriate aggregation of 
join results. The algorithms implementation has been 
performed using Hadoop, an open source MapReduce 
implementation and an Apache project. The deployment and 
evaluation of our solution performed in pseudo-distributed 
mode and on a small cluster of commodity computers, show 
viability of our approach in usability of MapReduce/Hadoop 
in big spatio-temporal data processing and analysis.  

Although the literature is rich in spatio-temporal data 
management, processing and mining techniques, handling 
massive trajectory data with MapReduce is expected to boost 
the performance of analytic tasks in big trajectory data. There 
are significant issues that are considered very important for 
further research and development. Since the MapReduce 
model is mainly batch oriented it should be interesting to 
explore its possibilities and extensions toward real-time 
stream data processing of trajectory data. Since trajectories 
change frequently by addition of new location data, it is very 
interesting to explore update and monitoring issues in a 
MapReduce setting. Also, a very challenging task is to explore 
and adapt the MapReduce framework in a mobile 
environment (mobile cloud computing). 
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