

Processing of Big Spatio-Temporal Data
using MapReduce

Dragan Stojanović1, Natalija Stojanović2

Abstract – In this paper, we present research work related to
processing and analysis of big trajectory data using MapReduce
framework. We describe the MapReduce-based algorithms and
applications implemented on Hadoop for processing spatial join
between big trajectory data and set of POI regions and
aggregation of join results for the purpose of movement analysis.
The experimental evaluation and results in detecting trajectory
patterns of particular users and the most popular places in the
city during evening demonstrate the feasibility of our approach.

Keywords – Spatio-temporal data processing, Big data, GIS,

cloud computing, MapReduce, Hadoop

I. INTRODUCTION

Advances in remote sensors, sensor networks, and the
proliferation of location sensing devices in daily life activities
lead to the explosion of disparate, dynamic, and
geographically distributed spatio-temporal data in the form of
moving object trajectories. Also, ground, air- and space-borne
remote sensing technologies, as well as large-scale scientific
simulations are generating petabytes of spatio-temporal data.
These ever-increasing volumes of spatio-temporal data call for
new models and computationally effective algorithms in order
to efficiently store, process, analyze and visualize such a big
data in advanced data-intensive systems and applications.

During the last decade there has been a growing interest in
research of parallel and distributed computing applied to the
management, processing and analysis of massive geo-spatial
data [1]. Advanced GIS applications, such as real-time
disaster management, high-fidelity terrain visualization,
global climate change analysis, traffic monitoring, etc.,
impose strengthen performance and response time constraints
which cannot be met by contemporary Geographic
Information Systems (GIS) and spatial databases. Thus, high-
performance computing (HPC) may meet the requirements of
these applications [2]. Various researchers propose methods
and techniques for high performance and parallelization in the
processing and analysis of big geo-spatial data based on
cluster and cloud computing [3], as well as on personal
computers equipped with multiprocessor CPUs and massively
parallel GPUs [4].

The recent proliferation of distributed and cloud computing

infrastructures and platforms, both public clouds (e.g.,

Amazon EC2) and private computer clusters, has given a rise
for processing and analysis of complex Big data. Especially,
the implementation of MapReduce framework in the form of
open-source Hadoop software stack, that can work on clusters
of share-nothing machines, have set this paradigm as an
emerging research and development topic [5]. The
MapReduce paradigm hides details about data distribution,
data availability and fault-tolerance, and can scale to
thousands of computers in a cluster or cloud [6]. The
MapReduce processing consists of two steps, namely Map and
Reduce that are performed through map and reduce functions
(Fig. 1). The map function receives a collection of key-value
pairs of the form <k0,v0> and produces collection of key-
value pairs of the form <k1,v1>, <k2,v2>, <k3,v3>, ... Then, the
framework executes a shuffle that sends each reducer a
collection <ki, v1, v2, v3,...>, i.e., a sequence of values
corresponding to the same key value ki. Each reducer
generates its own output. Load balancing, data distribution
and fault tolerance issues are handled by the MapReduce
framework itself, thus, the programmer can focus on the
solution to the problem.

Fig. 1. MapReduce data flow [6]

In this paper we implement MapReduce algorithms and
corresponding applications using Hadoop to perform spatial
join between trajectory data set and regions around
points/places of interest (POI), and further aggregation of join
results, to generate the symbolic trajectories of mobile users,
as well as to detect the most popular POI in the city.

The rest of the paper is structured as follows. Section II
presents the research work related to processing and analysis
of spatial and spatio-temporal data using MapReduce. In
section III we describe the Hadoop implementation for
processing big trajectory data set over set of POI in the city.
Section IV gives the results and presents the evaluation of our
implementation. Section V concludes the paper and gives
directions for future research.

1 Dragan Stojanović is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, 18000 Niš, Serbia
E-mail: dragan.stojanovic@elfak.ni.ac.rs

2 Natalija Stojanović is with the Faculty of Electronic Engineering,
University of Nis, Aleksandra Medvedeva 14, 18000 Niš, Serbia
E-mail: natalija.stojanovic@elfak.ni.ac.rs

101

II. RELATED WORK

Big data is currently the hottest topic for data researchers
and scientists with huge interests from the industry and
government agencies [7]. Recently, several initiatives related
to Big data have emerged in the European area, such as Euro
Lab on Big Data Analytics and Social Mining1 and the speech
“Big data for Europe” held at ICT 2013 Event2.

The application of high-performance parallel and
distributed computing to big spatio-temporal data is of
increasing interest at the European level in the European
Space Agency3 (the "Big data from Space" event). At the
global level, the Open Geospatial Consortium (OGC) has
started activities focused on the geospatial aspects of big data
Processing4, the US government has announced Big data
R&D initiative5, and the industry has already offered
commercial solutions, such as the IBM Big data platform6.

Recently, there is also a growing research interest in spatio-
temporal data management, processing analysis and mining
using MapReduce model. Cary et al. in [8] present their
experiences in applying the MapReduce framework to
important spatial database problems. They investigate R-tree
bulk-loading issues in MapReduce, as well as aerial image
quality computation and prove excellent scalability in parallel
processing of spatial data. In [9] some efficiency issues
regarding spatial data management are considered and an
implementation of the all-nearest-neighbor query algorithm is
provided. The authors present performance evaluation and
show that the MapReduce-based spatial applications
outperform the traditional one on a DBMS.

Spatial joins in MapReduce are studied in [10]. The authors
present SJMR (Spatial Join with MapReduce) algorithm that
includes strip-based plane sweeping algorithm, tile-based
spatial partitioning function and duplication avoidance
technology to perform spatial join on MapReduce. The
performance evaluation of SJMR algorithm over the real-
world data sets shows the applicability of MapReduce for
data-intensive spatial applications on small clusters.

Regarding spatio-temporal and trajectory data, a first
approach is presented in [11] where massive trajectory
management issues are investigated. The authors present a
new framework for query processing over trajectory data
based on MapReduce in order to utilize the parallel processing
power of computer clusters. They perform preliminary
experiments showing that this framework scales well in terms
of the size of trajectory data set [12].

SpatialHadoop is developed as the first extension of
MapReduce framework with support for spatial data and
operations [13]. SpatialHadoop employs a spatial high level
language, a two-level spatial index structure, and three basic
spatial operations: range queries, k-NN queries, and spatial

1 www.sobigdata.eu
2 http://ec.europa.eu/digital-agenda/en/news/big-data-europe
3 http://www.congrexprojects.com/13C10/
4 http://www.opengeospatial.org/blog/1866
5 http://goo.gl/Rp2EZz
6 http://www-01.ibm.com/software/data/bigdata

join. SpatialHadoop demonstration has been done on an
Amazon EC2 cluster against two real spatial data sets.

Although there is a considerable recent research interest
related to spatial and spatio-temporal data management on
MapReduce, there is limited work performed for trajectory
(mobility) data processing and analysis using the MapReduce
framework. Our work aims to provide efficient MapReduce
solution for a fundamental mobility data processing task
related to big trajectory data sets.

III. SPATIO-TEMPORAL DATA PROCESSING USING
HADOOP

The research presented in this paper aims to provide
efficient MapReduce solution for a big mobility data
processing and analysis task related to the trajectory data set
representing movement of mobile users and the points/places
of interest they visit.

The problem we investigate in this work is actually the
spatial join between a big set of spatio-temporal trajectory
data T and a (potentially large) set of spatial regions R. The
trajectory data represent the movement of a large collection of
moving objects/mobile users tracked for a certain time period
with the specified frequency of location updates. Each
trajectory is seen as a collection of points <oid, xi, yi, ti>,
where xi, yi represent the location in a geographic/geometric
reference system and ti is the corresponding time stamp at
which the moving object (oid) is detected at the specified
location. Trajectories of a large number of moving objects
collected for a long time period are characterized by large
volumes, considered as Big data and therefore their processing
and analysis is a challenging issue.

Each spatial region R represents an area around point/place
of interest (POI) visited by mobile users that stay there for
certain time periods. A mobile user visits particular POI if its
recording location at corresponding time stamp is within the
area of POI; otherwise a mobile user is considered to be on a
trip between two POIs.

The objective of our MapReduce implementation is to
provide:
• Analysis of user’s movement and trajectory to detect

places she visited and at which she stayed for a certain
time period in the form of symbolic trajectory
(POI1,Period1)→(POI2,Period2)→…→(POIn, Periodn).

• Detection of the most popular places regarding the
number of users that visited them and the total amount
of time they stayed at a particular place.

For such analysis we develop two MapReduce application/
jobs over the trajectory and region data sets.

The first job, named SemanticTrajectory, performs
processing and analysis of trajectory data related to mobile
users and detects their visits to POIs. During the Map phase,
each mapper reads its input, which is a collection of records of
the form <oid, location, time> and performs the spatial join
with POI data set containing records of the form <pid, area,
attributes>, according to the spatial relation Within(location,
area). The output of mappers is in the form <(oid, pid), time>
where the pair (oid,pid) represents the composite key and the

102

parameter time is a value. In the Reduce phase, each reducer
collects the identifiers of the same (oid, pid) and process and
aggregate the time values detecting the time period(s) during
which the object stays at the POI. The output of the reducers
contains records of the form <oid, pid, (t1,t2)> and is written
back to HDFS. Each record of the output represents the period
during which a mobile user oid visits the place pid and
represents the semantic trajectory of a mobile user, i.e. the
pattern of her movement.

The second MapReduce job we developed, named
PopularPlaces, focuses on POIs and detects their popularity
according to the number of visits and the total duration of
stays. During the Map phase, each mapper reads the same big
trajectory data set as the first job and performs the spatial join
with POI data set. This time the output of mappers is in the
form <pid, (oid, time)> where the pid represents the key and
(oid, time) is a value. In the Reduce phase, each reducer
collects the identifiers of the same pid, and process and
aggregate the oid and time values detecting the total number
of unique mobile users that visited particular place and the
total time periods of their visits to POI. The output of the
reducers contains records of the form <pid, nr_oid,
total_time> and is written back to HDFS. Each record of the
output represents the total number of users (nr_oid) that
visited a place pid, and the total time (total_time) that these
users stay at place pid.

IV. EXPERIMENTAL EVALUATION

In this section, we present the experimental evaluation of
the implemented algorithms described previously.

The algorithms have been implemented in Hadoop 1.2.1
(http://hadoop.apache.org/) and experiments have been
conducted in a pseudo-distributed mode, as well as on a small
cluster of 5 nodes (commodity computers). A master node is a
physical machine Pentium IV with 3 GHz CPU and 4GB of
RAM, while worker nodes are virtual machines on a private
IaaS cloud equipped with Intel Xeon CPU 1.6GHz Dual Core.
Each node runs Ubuntu 12.10 Linux and have Java SDK 1.7
installed. In addition, each node runs both a Task Tracker and
Data Node daemon, while a master node acts as Job Tracker
and Name Node, as well.

In our study, implementation and evaluation we have used
MilanoByNight simulated datasets that have been provided by
the EveryWare Lab, University of Milano [14]. The authors of
the data set consider a typical deployment scenario for a
friend-finder service: a large number of young people using
the service on a weekend night in large city like Milan. The
simulation includes a total of 30,000 home buildings, 10,000
office buildings and 1,000 entertainment places which
represent a POI dataset. The trajectory data set contains 180
million of records for 100,000 mobile users moving over the
city of Milan while location updates are made at every 2
minutes. The movement has been recorded over 6 hours long
time period, from 7pm - 1 am, which amounts for about 1.3
GB in total.

Both data sets are stored in the HDFS. The trajectory data
set is available to all started mappers through HDFS
partitioning mechanism. For the POI data set, we exploit the

features of the distributed cache mechanism supported by
Hadoop, meaning that all POI data are available to all Map
and Reduce tasks. Since in our setting the size of the POI
dataset is significantly smaller than the size of the trajectories
dataset, the distributed cache is a convenient way to share data
across Hadoop nodes.

We have run our MapReduce jobs on a small commodity
cluster containing 5 nodes. The SemanticTrajectory
MapReduce job engages 20 Map tasks and 10 reduce tasks
that finish the job for 1 hour and 9 minutes, producing an
output of about 56 MB stored on HDFS. The job output is in
the form of records shown in Table I for particular users.

TABLE I
THE OUTPUT OF THE SEMANTICTRAJECTORY JOB

OID PID Time period

10233 2091 [09.01.2009. 07:02 - 09.01.2009. 07:52]
10233 1362 [09.01.2009. 08:58 - 09.01.2009. 11:30]
10233 4560 [09.01.2009. 11:45 - 10.01.2009. 00:58]

...
14215 3195 [09.01.2009. 07:00 - 09.01.2009. 08:30]
14215 1587 [09.01.2009. 08:42 - 09.01.2009. 10:04]
14215 1890 [09.01.2009. 10:24 - 09.01.2009. 12:02]
14215 2964 [09.01.2009. 12:10 - 10.01.2009. 1:00]

...
14216 2694 [09.01.2009. 07:00 - 09.01.2009. 09:20]
14216 6264 [09.01.2009. 09:34 - 09.01.2009. 11:04]
14216 788 [09.01.2009. 11:30 - 10.01.2009. 01:00]

…

The PopularPlaces job engages the same number of Map
and Reduce tasks and performs faster than previous one,
completing its processing for 35 minutes. The excerpt of the
output of the PopularPlaces job for the most popular places,
having about 100 KB in size, is shown in Table II sorted
according the total number of visitors.

TABLE II
TOP POPULAR PLACES SORTED BY

 TOTAL NUMBER OF UNIQUE VISITORS

PID Total visitors Total time
17 1635 140892

83 1530 117016
136 1466 126504
96 1458 121378

180 1435 116852
416 1341 113436
97 1326 72378

132 1317 69428
409 1301 109586
318 1289 121484
276 1247 110236
…

103

The results produced can be visually analyzed using a
specified tool that supports analytics of spatio-temporal and
trajectory data, such as Microsoft SQL Server Business
Intelligence Features.

The main objective of our work is not to evaluate the
performance of trajectory data processing, since we
implement our algorithms on a small, available cluster. Since
MapReduce and its Hadoop implementation provides
excellent scalability in terms of bigger data sets, as well as
larger computing resources, our applications can be easily
scaled to more powerful computer nodes than those we used
and larger cluster with thousands of machines (e.g. Amazon
Elactic MapReduce - EMR) to achieve much higher
performances, that are generally expected.

V. CONCLUSION

In this paper, we propose the design and implementation of
efficient algorithms for processing of spatio-temporal data that
represent moving object trajectories using MapReduce. These
algorithms consist of spatial join between a big trajectory data
set and a POI (region) data set, and appropriate aggregation of
join results. The algorithms implementation has been
performed using Hadoop, an open source MapReduce
implementation and an Apache project. The deployment and
evaluation of our solution performed in pseudo-distributed
mode and on a small cluster of commodity computers, show
viability of our approach in usability of MapReduce/Hadoop
in big spatio-temporal data processing and analysis.

Although the literature is rich in spatio-temporal data
management, processing and mining techniques, handling
massive trajectory data with MapReduce is expected to boost
the performance of analytic tasks in big trajectory data. There
are significant issues that are considered very important for
further research and development. Since the MapReduce
model is mainly batch oriented it should be interesting to
explore its possibilities and extensions toward real-time
stream data processing of trajectory data. Since trajectories
change frequently by addition of new location data, it is very
interesting to explore update and monitoring issues in a
MapReduce setting. Also, a very challenging task is to explore
and adapt the MapReduce framework in a mobile
environment (mobile cloud computing).

VI. ACKNOWLEDGMENTS

Research presented in this paper is funded by Ministry of
education, science and technological development, Republic
of Serbia as part of the project “Environmental Protection and
Climate Change Monitoring and Adaptation”, Nr. III-43007.

REFERENCES

[1] A. Clematis, M. Mineter, and R. Marciano, “High performance
computing with geographical data,” Parallel Comput., vol. 29,
no. 10, pp. 1275–1279, Oct. 2003.

[2] S. Shekhar, “High performance computing with spatial
datasets,” Proceedings of the ACM SIGSPATIAL International
Workshop on High Performance and Distributed Geographic
Information Systems - HPDGIS ’10, pp. 1–2, 2010.

[3] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz,
“Hadoop-GIS: A High Performance Spatial Data Warehousing
System over MapReduce,” Proceedings VLDB Endowment,
vol. 6, no. 11, Aug. 2013.

[4] J. Zhang, “Towards personal high-performance geospatial
computing (HPC-G),”Proceedings of the ACM SIGSPATIAL
International Workshop on High Performance and Distributed
Geographic Information Systems - HPDGIS, pp. 3–10, 2010.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1,
p. 107, Jan. 2008.

[6] T. White, Hadoop: The Definitive Guide, 3rd Edition, O’Reilly
Media, p. 688, 2012.

[7] V. Mayer-Schönberger and K. Cukier, Big Data: A Revolution
That Will Transform How We Live, Work, and Think, Eamon
Dolan/Houghton Mifflin Harcourt, p. 256, 2013.

[8] A. Cary, Z. Sun, V. Hristidis, and N. Rishe, “Experiences on
Processing Spatial Data with Using MapReduce in Practice”,
Proceedings of 21st International Conference on Scientific and
Statistical Database Management, pp. 302-319, 2009.

[9] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song,
“Accelerating Spatial Data Processing with MapReduce”,
Proceedings of the 2010 IEEE 16th International Conference on
Parallel and Distributed Systems, pp. 229–236, 2010.

[10] S. Zhang, J. Han, Z. Liu, K. Wang, and Z. Xu, “SJMR:
Parallelizing spatial join with MapReduce on clusters”,
Proceedings of the 2009 IEEE International Conference on
Cluster Computing and Workshops, pp. 1–8, 2009.

[11] Q. Ma, B. Yang, W. Qian, and A. Zhou, “Query Processing of
Massive Trajectory Data based on MapReduce,” Proceeding of
the first international workshop on Cloud data management -
CloudDB’09, pp. 9–16, 2009.

[12] B. Yang, Q. Ma, W. Qian, and A. Zhou, “Truster: Trajectory
data processing on clusters,” Proceedings of 14th International
Conference Database Systems for Advanced Applications
DASFAA, pp. 768–771, 2009 .

[13] A. Eldawy and M. F. Mokbel, “A Demonstration of
SpatialHadoop: An Efficient MapReduce Framework for Spatial
Data,” Proc. VLDB Endow., vol. 6, no. 12, pp. 1230–1233,
Aug. 2013.

[14] S. Mascetti, D. Freni, C. Bettini, X. S. Wang, and S. Jajodia,
“On the Impact of User Movement Simulations in the
Evaluation of LBS Privacy- Preserving Techniques,”
Proceedings of the 1st International Workshop on Privacy in
Location-Based Applications, vol. 397, 2008.

104

