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Abstract – In this paper an artificial neural networks 

(ANN) based approach for the development of an inverse 
electro-mechanical model of capacitive RF MEMS switch 
is presented. The ANN model is aimed to predict length of 
the fingered part of the switch for fixed length of the solid 
part of the bridge, resonant frequency and actuation 
voltage. In this way, for the given length of the bridge solid 
part, the bridge fingered part length needed to achieve the 
requested resonant frequency with the chosen actuation 
voltage can be instantaneously found.  The obtained 
results confirm the efficiency and accuracy of the 
proposed approach.  
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I. INTRODUCTION 

RF MEMS switches are often used in modern 
communication and measurement systems since they have 
numerous advantages over their mechanical or electronic 
counterparts.  RF MEMS switches are very small, extremely 
linear, can be integrated and allow easy re-configurability or 
tunability of a system [1].  

Therefore, the design of the circuits containing RF MEMS 
switches requires the presence of reliable and accurate 
models. The modeling of RF MEMS switches is 
conventionally performed using standard commercial 
electromagnetic simulators [2]-[3]. However, those 
simulations are time consuming and require considerable 
computing resources because RF MEMS switches normally 
consist of several complex thin layers and via connections of 
micro-scale.  

Artificial neural networks (ANNs) [4] have appeared as an 
efficient alternative to build the models able to determine the 
switch characteristics in a very short time, reducing in that 
way the time needed for the simulation of circuits containing 
the considered switches [5]-[10]. 
 

In the previous papers [9-10], ANN based models of RF 
MEMS capacitive switches are developed. ANNs are used to 
predict the switch S-parameters for the given values of 
frequency and geometrical lateral dimensions of the switch 
bridge [9]. Having in mind that very often it is not necessary 
to determine frequency dependence of the scattering 
parameters, but just to have information about the resonant 
frequency change with the change of switch geometry 
parameter values, a new ANN model trained to predict the 
resonant frequency for the given lateral dimensions of the 
bridge is proposed [9]. Similar ANN model that can be 
applied to model the chosen mechanical parameter of the 
switch - actuation voltage on the considered switch 
geometrical parameters as inputs is also developed, [10]. 
ANN models that model the electrical resonance frequency or 
actuation voltage for the given lateral dimensions of the 
switch are called direct ANN models. It is shown that 
optimization process is significantly reduced by the usage of 
those models instead of the standard EM/mechanical 
simulators, but still there is a need for the optimizations. In 
order to avoid optimizations completely, a new approach 
based on ANN for the switch inverse modeling is proposed, 
[10]. The procedure is demonstrated at the example of the 
capacitive switch, where the length of the fingered part is 
determined for a given length of the solid part of the bridge 
and electrical resonance frequency / actuation voltage.  

Since electrical and mechanical characteristics of the switch 
are not mutually independent, the optimization of the 
dimensions should be performed simultaneously in the EM 
and mechanical simulator, which can be very complex and 
time consuming. Therefore, in this paper we propose a further 
extension of the procedure suggested in [10]. Namely, the idea 
is to extend the inverse ANN models shown in [10] to 
combine mechanical and electrical parameters of the switch. 
The new inverse electro-mechanical ANN model has resonant 
frequency, actuation voltage and length of the solid part of the 
bridge as the inputs and the length of the fingered part as the 
output, as it will be described later. 

The paper is organized as follows: after Introduction, in 
Section II a brief background on the ANNs is given. In 
Section III the capacitive RF MEMS switch modeled in this 
work is described. An inverse electro-mechanical ANN model 
is proposed in Section IV.  Further, details of the proposed 
modeling technique and the obtained numerical results are 
presented and discussed in Section V. Finally, Section VI 
contains concluding remarks. 
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II. ARTIFICIAL NEURAL NETWORKS 

In this work, multilayered ANNs are used in this work [4]. 
A multi-layered ANN consists of layers of neurons: an input 
layer, an output layer, as well as one or more hidden layers. 
The number of neurons in the input layer equals to the number 
of independent input parameters, whereas the number of the 
output neurons equals to the number of parameters modeled 
by the ANN. An ANN is trained to learn dependencies 
between two data sets by optimization of thresholds of the 
neuron activation functions and the neuron connection 
weights. Once trained ANNs give instantaneous response for 
different combinations of the input parameter values, no 
matter if they have been used for the model development or 
not. The ANN generalization, i.e., their ability to give the 
correct response for the input values not used for their 
training, qualified them as an efficient modeling tool in the 
field of RF and microwaves [1], [11-14]. 

III. DEVICE DESCRIPTION 

The considered device is an RF MEMS capacitive coplanar 
shunt switch, depicted in Fig. 1, fabricated at FBK in Trento 
in an 8 layer Silicon micromachining process [11]. The signal 
line below the bridge is realized as a thin aluminum layer. 
Adjacent to the signal line the DC actuation pads made by 
polysilicon are placed. The bridge is a thin membrane 
connecting both sides of the ground. The inductance of the 
bridge and the fixed capacitance between signal line and 
bridge form a resonant circuit to ground.  The resonant 
frequency can be changed by varying the length of the 
fingered part, fL , close to the anchors and the solid part, sL . 
At the series resonance the circuit acts as a short circuit to 
ground. In a certain frequency band around the resonant 
frequency the transmission of the signal is suppressed. The 
bridge can be closed by applying an actuation voltage of 
around 45V.  

The actuation voltage is determined as the instant voltage 
applied to the DC pads when the bridge comes down and 
touches a coplanar waveguide centerline, which is a pull-in 
voltage ( PIV ). This is strongly related to the switch features 
and mechanical/material properties, such as a DC pad size and 
location, a bridge spring constant and residual stress, bridge 
shapes or supports, etc. The finger parts (correspond to fL ) 

in Fig. 1 are to control PIV . If finger parts are long compared 
to the other parts, the bridge becomes flexible and the switch 
is easily actuated by a low PIV . But this increases the risk of 
a self-actuation or an RF hold-down when the switch delivers 
a high RF power. And opposite, with the short finger parts, 
the switch needs a high PIV  to be actuated. Therefore, the 
bridge part lengths ( fL , sL ) should be carefully determined 
considering a delivering RF power and a feasible DC voltage 
supply [1]. 

 

 
a) 

 

 

b) 

Fig. 1. a) Top-view of the realized switch; b) schematic of the cross-
section with 8 layers in FBK technology [11]  

IV. PROPOSED INVERSE ELECTRO-MECHANICAL 
ANN MODEL 

An ANN model for inverse electro-mechanical modeling of 
RF MEMS capacitive switch is proposed. As it is mentioned 
in the introductory section, the idea is to train an ANN to 
calculate the length of the bridge fingered part, fL , for the 

fixed value of the solid part, sL , in order to obtain a desired 
electrical resonant frequency, resf , having a chosen actuation 
voltage, VPI. Therefore, the ANN has three inputs 
corresponding to sL , resf  and VPI, and one output 
corresponding to fL , as shown in Fig. 2. 

 

Fig. 2. Proposed inverse electro-mechanical ANN model. 
 
The training data necessary for model development is 

acquired by simulations. Namely, for certain number of 
combinations of fL  and sL  the corresponding resonant 
frequency values and actuation voltage values should be 
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calculated in appropriate EM / mechanical simulators. 
Alternatively, these values can be determined by using the 
neural models relating the bridge lateral dimensions with the 
resonant frequency and the actuation voltage, as shown in [10] 
in the case of inverse electrical/mechanical models. The 
advantage of using such direct neural models for generating 
the training data, over using the standard EM/mechanical 
simulators,  is that an arbitrary sized training set can be 
generated in a very short time.  

Once trained, the developed ANN model can be used for 
determination of fL  instantaneously for given sL , resf  and 
VPI without any further optimization. 

IV NUMERICAL RESULTS 

The ANN models of the considered switch were developed 
for the following ranges of the switch geometrical parameters: 

sL  from 100 µm to 500 µm, and fL  from 0 µm to 100 µm. 
The training data was obtained by using the direct neural 

models of the switch resonant frequency and actuation 
voltages, as described in [10].  The training set referred to 
4131 combinations of fL  and sL values. For the ANN 
training, Levenberg-Marquardt algorithm, a modification of 
the most frequently used optimization backpropagation 
algorithm, was used [4]. Since the number of hidden neurons 
of an ANN cannot be a priori set, ANNs with different 
number of hidden neurons were trained and tested. After their 
assessment the network with the best modeling results is 
chosen as the final neural model. The best results were 
achieved by the ANN having two hidden layers containing 10 
and 20 neurons, respectively.  

The test set referred to 40 combinations of fL  and  

sL values, and the corresponding values of the resonant 
frequency (calculated in ADS momentum [15]) and actuation 
voltage (calculated in COMSOL Multiphysics [16]).  
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Fig. 3. The length of the fingered part of the switch 
Scattering plot: ANN model vs. reference data 

 

The proposed neural model provides good modelling 
accuracy, as can be confirmed by the scattering plot given in 
Fig. 3 where the values of the Lf  obtained by chosen ANN are 
shown versus the corresponding target values for Lf. There is a 
very small scattering from the ideal diagonal line y=x 
indicating a good modelling accuracy. 

With the aim of further accuracy investigation of the 
proposed neural model, for resf =12 GHz and VPI = 75 V. it 
was examined how the fL  values obtained by the proposed 
model affect the values of the corresponding resonant 
frequency and actuation voltage. Namely, the fL  values 
obtained by the proposed inverse electro-mechanical ANN 
model 

 ( )resPIsinvANNinvf fVLfL ,,__ =  (1) 

are used as inputs in direct ANN models to obtain resonant 
frequency and actuation voltage, respectively: 

 

 ( )sinvfdirEANNdirres LLff ,___ = , (2) 

 ( )sinvfdirMANNdirPI LLfV ,___ = . (3) 

These values are then compared with the initial resf  and 
VPI values used as the inputs of the inverse model, and the 
corresponding absolute (AE) and relative errors (RE) were 
calculated and shown in shown in Table I and Table II. The 
following labels are used: 

 resdir_resf ffAE res −= , (4) 

 PIdir_PIV VVAE PI −= , (5) 

 resff fAERE resres = , (6) 

 PIVV VAERE PIPI = , (6) 

It can be seen that the errors are smaller than 2%, 
confirming very good modeling accuracy.  

TABLE I 
RF MEMS SWITCH  MODELING RESULTS: resf  

sL  
[µm] 
 

resf  

[GHz] 
PIV

[V] 
inv_fL

 [µm] 
 

dir_resf  

[GHz] 
resfAE

 [GHz] 
resfRE

 [%] 

280 12 25 71.35 11.886 0.114 0.95 
290 12 25 61.703 11.859 0.141 1.20 
300 12 25 52.228 11.827 0.173 1.40 
310 12 25 43.426 11.789 0.211 1.80 
320 12 25 35.355 11.755 0.245 2.00 
330 12 25 26.917 11.884 0.116 0.97 
340 12 25 16.59 12.009 0.009 0.07 
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TABLE II 
RF MEMS SWITCH  MODELING RESULTS: PIV  

sL  
[µm] 

 

resf  

[GHz] 
PIV

[V] 
inv_fL  

[µm] 
 

dir_PIV
[V] 

PIVAE

[V] 
PIVRE

[%] 

280 12 25 71.350 25.169 0.169 0.68 
290 12 25 61.703 25.143 0.143 0.57 
300 12 25 52.228 25.120 0.120 0.48 
310 12 25 43.426 25.082 0.082 0.33 
320 12 25 35.355 25.056 0.056 0.22 
330 12 25 26.917 25.129 0.129 0.52 
340 12 25 16.590 25.380 0.380 1.50 

V. CONCLUSION 

In this paper an ANN based procedure for the development 
of inverse electro-mechanical model of capacitive RF MEMS 
switch has been presented. The ANN model is aimed to 
predict length of the fingered part of the switch for fixed 
length of the solid part of the bridge, resonant frequency and 
actuation voltage. Unlike the standard switch optimization 
procedures, where it is necessary to perform complex time-
consuming optimizations in the EM and mechanical 
simulators to optimize the switch dimensions in order to 
achieve the requested resonant frequency and actuation 
voltage, in the proposed approach the ANNs are used to 
determine the desired dimension without optimizations. 
Optimizations in EM and mechanical simulations, are 
replaced with the optimizations needed for training the ANNs, 
but once the ANNs have been trained the length of the 
fingered part of the bridge could be obtained by simple 
calculation of the ANN response. This model is especially 
useful in the cases when it is necessary to perform many 
optimizations of the same structure.  
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