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Dispersive Anisotropic Structures Modelling 
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Abstract – An efficient approach for modelling of dispersive 
anisotropic structures is considered in this paper. The approach 
uses the Transmission Line Matrix (TLM) method based on Z-
transforms to account for dispersive properties of anisotropic 
structures in the time-domain. In-house developed TLM code has 
been used to implement this approach and apply it on carbon-
fibre composite as anisotropic conductive material. The accuracy 
and efficiency of the presented approach are first illustrated on 
the simplified case when carbon fibre anisotropic electric  
conductivity is treated as frequency independent parameter 
through comparison with analytically available solution. Then, 
the Drude model is employed to account for dispersive behaviour 
of conductivity and to consider its impact of reflection and 
transmission properties of carbon fibre sample material.   
 

Keywords – Dispersive anisotropic materials,  TLM method, Z-
transform, Drude mode. 

I.  INTRODUCTION 

Differential time-domain numerical techniques are common 
tools for modelling of complex electromagnetic (EM) 
structures at high frequencies. Among them, the most popular 
are the finite difference time domain (FD-TD) method [1] and 
transmission line matrix (TLM) method [2]. Although very 
similar, as they are both based on space and time 
discretizations, TLM approach offers crucial advantage in 
certain complex problems. In TLM, the electric (E) and 
magnetic (M) fields are co-located in space and time (at the 
centre of the discretization cell), while in Yee's FDTD 
algorithm [1] the E-fields are on the edges and H-fields are at 
the centre of the cell. Therefore, TLM algorithm is more 
suitable for modelling of anisotropic and bi-anisotropic 
materials and the mesh layout is much simpler than in FDTD 
method. In addition, there is not need to perform field 
averaging and temporal interpolation in order to determine 
fields on cell boundaries.  

Both methods in their conventional use allow for modelling 
of materials with frequency independent EM properties. 
However, as they basically operate in the time-domain they 
are perfectly suited for time-harmonic and transient simulation 
of frequency dependent structures for direct analysis of their 
dispersive behaviour. Several techniques have been already 
developed and implemented in FDTD method to incorporate 
frequency dispersion. Some of these techniques are detailed 
and referenced in [3] regarding dispersive metamaterials 
structures. One variation of the TLM method which is 

naturally suited to the description of arbitrary time-dependent 
responses is based on Z-transforms [4]. This approach has 
been successful in the development of numerical schemes for 
the time-domain treatment of variety of frequency-dependent 
materials, i.e. linear isotropic, linear anisotropic, bi-isotropic, 
nonlinear and quantum media [5-9]. In recent work, the TLM 
technique with Z transforms has been successfully applied to 
the time-domain simulation of dispersive metamaterials and 
graded refractive index metamaterials [10-11]. 

In this paper, an in-house developed TLM code has been 
used to implement TLM method with Z-transforms for the 
purpose of efficient modelling of carbon-fibre composite used 
in aircraft constructions. The embedded carbon fibres cause 
the materials to have a high electric conductivity in the 
direction of the fibres, i.e. conductivity of these materials is 
anisotropic [4]. The accuracy of the presented method is first 
illustrated on the simplified case when carbon fibre 
anisotropic electric conductivity is treated as frequency 
independent parameter through comparison with analytically 
available solution. Then, the Drude model is employed to 
account for dispersive behaviour of electric conductivity and 
to consider its impact of reflection and transmission properties 
of carbon fibre sample material. 

II. ANISOTROPIC MATERIALS MODELLING BY 
USING TLM METHOD WITH Z-TRANSFORMS 

Using the notation for the fields, current and flux densities 
and corresponding constitutive relations for the electric and 
magnetic current and flux densities, Maxwell's curl equations 
can be expressed in the time-domain in compact form as [4,5]: 
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where E  and H  are electric and magnetic field vectors, efJ  

and mfJ  are the free electric and magnetic current density 

vectors, 0ε  and 0µ  are free-space permittivity and 
permeability, c is the speed of light in free-space and  
operator * denotes the time-domain convolution. The matrices 

eσ  and mσ  are the electric and magnetic conductivity 
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The matrices eχ  and mχ  are of similar form and they 

describe the electric and magnetic susceptibilities, 
respectively, while the matrices rξ  and rζ  are 

dimensionless describing the magneto-electric coupling.  
The curl terms of Eq.(1) can be expand in Cartesian 

coordinates and express as a functions of voltage pulses of 
appropriate transmission lines of TLM cell (Fig.1) [4] by 
using the field circuit equivalence for the electric and 
magnetic fields of the form: 
 ∆−= /ii VE , ( )0/ η∆−= ii iH , ( )zyxi ,,∈ , (3) 

where iV  and ii  are equivalent voltage and current in the cell 
centre along i-th coordinate axis, ∆  is the size of TLM cell 
( ∆=∆=∆=∆ zyx ) and 0η  is the intrinsic impedance of 
free-space. 
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Fig. 1. TLM cell 

 
After that, Eq.(1) can be expressed, after converting to 

travelling wave format, as [4]: 
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where 
tcT ∂
∂∆

=
∂
∂

2
 , 0ησ ∆= eeg  and 0/ησ ∆= mmr . 

Superscript i is used to denote incident wave quantities. Eq.(4) 
can be also written in compact notation [4]: 
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or in matrix notation: 

 [ ]FTM
T

FTFF r *)(2*)(42
∂
∂

++= σ , (6) 

where )(Tσ  is the general conductivity matrix used to 
describe electric conductivity and magnetic resistivity terms 
and )(TM  is the general material matrix describing electric, 
magnetic and/or magneto-electric effects. Both matrices may 
contain time-dependent elements.  

Discretizing the normalized time-derivative operator in 
Eq.(6) by using the bilinear Z-transform as:  

 )1/()1(2/ 11 −− +−→∂∂ zzT , (7) 
and taking partial fraction expansions of matrices )(zσ  and 

)(zM , containing causal time-dependent elements, as [4,5]:  
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give the following  equation: 
 ]2[ 1SzFTF r −+= , (10) 

where 1
00 ]44[ −++= MT σ , M

r SSFKFS +−+= σ2 , 

]44[ 11 MK −+−= σ , FzS )(2σσ =  and FzMSM )(4 2= . 

There are many models that can be used to describe the 
frequency dependence of electric conductivity and magnetic 
resistivity, electric and magnetic susceptibilities and 
parameters expressing magneto-electric effects (e.g. Debye, 
Lorentz, Drude model, etc). By using any of available Z-
transforms such as exponential or bilinear  Z-transforms, it is 
possible to transfer this dependence in the time-domain, i.e. to 
obtain functions  )(zσ  and )(zM  and, after taking partial 
fraction expansions given by Eqs.(8-9), to incorporate this 
model into algorithm of the TLM method with Z-transforms.  

Combination of the Drude model for electric and magnetic 
conductivity and bilinear Z-transform was used in [10] to 
allow for the direct time-domain modelling of left-handed 
metamaterials. In a case of material with anisotropic electric 
conductivity of dispersive behaviour according to the Drude 
model: 
 )1/()( 0 eee ss τσσ += , (11) 
or: 
  )1/()()( 0 eecee sglssg τησ +=∆= , (12) 

for normalized electric conductivity, the elements of matrices 
0σ , 1σ and )(2 zσ , using equations derived in [10], are:  
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III. NUMERICAL RESULTS 

In-house developed TLM code has been used to implement 
TLM method with Z-transforms for the purpose of efficient 
modelling of carbon-fibre composite used in aircraft 
constructions. The embedded carbon fibres cause the 
materials to have a high conductivity in the direction of the 
fibres, i.e. conductivity of these materials is anisotropic [4]. 
Geometry of the problem is shown in Fig. 2. The composite 
material is represented with three layers of material having an 
isotropic relative permittivity of IIIIII rrr εεε == =43 and 
thickness IIIIII ddd == =3.75 mm.  

 
Fig. 2. Geometry of a carbon composite material 

First it is assumed that carbon fibre anisotropic electric 
conductivity is frequency independent parameter, i.e. that 
parameter eτ  in Eq.(19) is such that 1<<esτ  so that: 
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matrix for all three layers. Space-step used for the simulation 
was ∆ = 93.75 μm. 

The magnitude of the frequency-domain reflection Rij  and 
transmission Tij coefficients (where first index corresponds to 
the component of the reflected and transmitted fields while the 
second index expresses the polarization of the incident wave) 
are shown in Figs.3-6. Good agreement between TLM results 
(marked with red and blue solid lines) and analytic results 
(marked with red and blue plus and cross symbols) for 
frequency independent anisotropic conductivity carbon 
composite material can be observed in the considered 
frequency range up to 10 GHz.   

Then, the parameters of the Drude model in Eq.(12) are 
chosen so that anisotropic normalized electric conductivity 
varies with frequency in such way that at central frequency of 

5 GHz, its real part is equal to the value given for frequency 
independent case for each layer. A significant impact of 
dispersive behaviour of conductivity on reflection and 
transmission properties of carbon fibre sample material can be 
observed marked in Figs.3-6 with dashed red and blue lines.  
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Fig. 3. Magnitude and phase of reflection coefficients Ryy and Rzy 
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Fig. 4. Magnitude and phase of transmission coefficients Tyy and Tzy 
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Fig. 5. Magnitude and phase of reflection coefficients Rzz and Ryz 
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Fig. 6. Magnitude and phase of transmission coefficients Tzz and Tyz 

 

IV. CONCLUSION 

The approach based on TLM method with Z-transforms is 
used in this paper to account for dispersive properties of 
carbon-fibre composite as anisotropic electric conductive 
material. In-house developed TLM code has been used to 
implement this approach. The accuracy and efficiency of the 
presented method are illustrated on the cases of frequency 
independent and frequency dependent anisotropic electric 
conductivities when in later case the Drude model is 
employed to account for dispersive behaviour of electric 
conductivity and to consider its impact of reflection and 
transmission properties of carbon fibre sample material.  
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