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Abstract – The electrocardiogram (ECG) is often contaminated 
with drift interference. The subtraction procedure has proved its 
efficiency in removing the drift from the ECG.  

Development process of such device is prone and time 
consuming. High level synthesis (HLS) solves these problems. In 
this paper HLS tools are used to develop a device for drift 
removing. FPGA is used as a target platform. Automatic output 
generation is used to make the reconfiguration and further 
development easier and faster. 
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I. INTRODUCTION 

Drift interference is often present in the Electrocardiogram 
(ECG) due to complex mechanical and electro-chemical 
electrode-to-skin processes. The subtraction procedure shows 
good results in removing baseline drift from ECG signals [2]. 
The subtraction procedure algorithm is modeled in Matlab. 
Based on these algorithms is developed a hardware design for 
drift removing form ECG [1]. This design realizes the 
subtraction procedure for real time operation. It is developed 
using VHDL and FPGA as a target platform. This standard 
manual development process using VHDL is error prone and 
time consuming. The design often must be reconfigured which 
is also a difficult process. 

 

 
Fig. 1. Compaan Design Flow Basic Stages 

 
In [5] are presented several system level development 

technologies. Automated high level system generation helps 
the development process and makes it easier and faster. In the 
present work we choose Compaan to develop a design for 
drift removing from ECG using the Subtraction Procedure. 
Compaan is a high level synthesis tool [4]. Compaan is used 
in the current work because it can provide full system 
integration. It can implement not only the hardware and 
software implementation but also the communication and 
integration between them. 

Compaan design flow basic stages are shown on fig. 1. 
Compaan works with simple C code input specification. Khan 

Process Network (KPN) model of computation is used [4]. 
KPN specification is automatically generated based on the 
input. After that target platform and mapping specification are 
defined. Then software and hardware implementation can be 
automatically generated. Quick changes in the input 
specification are enough to automatically generate a new 
design and reconfigure the target platform. 

II. SUBTRACTION PROCEDURE FOR BASELINE 
DRIFT REMOVING 

The process flow of the Subtraction Procedure is shown on 
fig. 2. Its structure contains three main stages: 
– Linear segments detection. Each ECG sample is checked 

if it belongs to a linear segment by using appropriate 
linearity criterion. The linearity is defined by comparing 
the criterion with a predefined threshold M. 

– Baseline drift calculation. If it is detected a linear 
segment the baseline drift is calculated using a digital 
filter and it is stored in a temporal FIFO buffer. In the 
same time the baseline drift is subtracted from the linear 
segment; 

– Baseline drift extrapolation. If the current sample belongs 
to a nonlinear segment the value of the drift is calculated 
using the data stored in the temporal buffer and it is 
subtracted from the signal in a nonlinear segment. 

 

 

Fig. 2. Basic Structure of the Subtraction Procedure for Baseline 
Drift Removing. 

 
More details about the subtraction procedure for baseline 

drift removing are given in [2], [3]. The present work is 
focused on the implementation of the subtraction procedure 
for ECG drift removing in real time using Compaan design 
flow. 
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III. COMPAAN DESIGN FLOW 

Compaan design flow is centered on Compaan compiler 
and ESPAM tools [4]. The application must be specified as 
parameterized static affine nested loop which is a subset of the 
C language. Fig. 3 presents a detailed block diagram of the  
used Compaan design flow. 
 

Fig. 3. Compaan Design Flow. 
 
Compaan compiler automatically generates a KPN model 

of computation based on the input C specification. Processes 
are further processed by Compaan to obtain hierarchical sub 
networks. Target platform is selected to generate a platform 
specification. Processes of the KPN specification are mapped 
on HW (FPGA) and mapping specification is automatically 
generated. HW is automatically generated by ESPAM based 
on the specifications generated in the first step. [3] 

Nodes implemented with HW are using processors, which 
are composed of three separate blocks - read, execute and 
write. The read block waits until there are tokens ready to be 
read. A deep pipeline can be integrated in the execution block. 
When there are processed tokens ready to be sent the write 
block writes them into the corresponding communication link 
if there is space available. This structure provides the nodes 
with the ability to work independently of each other. Inside 
each node there is a constant track of the data, using iteration 
counters. Compaan tool allows simulation and verification of 
the system at each stage of development. It can optimize the 
size of the communication links based on the current 
application. [3] 

Compaan design flow is producing low power consuming 
and fault tolerant designs. Fault tolerance is based on the 
simplicity and higher abstraction of the input specification. 
Constant track of the data inside each node also contributes to 
make the system more fault tolerant. The asynchronous work 

inside the design makes it low power consuming since each 
node is working only where there is data to be processed. 
Memory is main source of power consumption and 
communication links size optimization is also a very 
important feature. 

The reconfiguration of the system using Compaan design 
flow is easy. It requires modification of the input C code and 
following the Compaan design flow to generate bit stream that 
can be used to reconfigure the hardware. 

IV. IMPLEMENTING THE SUBTRACTION 
PROCEDURE  FOR DRIFT REMOVING WITH 

COMPAAN 

The basic structure and elements of the Subtraction 
Procedure are shown on fig. 2. We use the Compaan design 
flow which is shown on fig 3 to implement the subtraction 
procedure for drift removing. All development flow steps are 
presented in this section. First input specification is created, 
after that KPN is automatically generated. Finally 
synthesizable VHDL code is automatically generated. More 
details for each step are listed in the following subsections. 

A. Input Specification 

As a first step of the development it is created the input SW 
specification. Short fraction of the C code input specification 
is present to picture its main concepts: 

 
#pragma compaan_procedure ecg_drift 
void filter(int data_in[WIDTH], int data_out[WIDTH], 
int drift_out[WIDTH], int cr_out[WIDTH], int 
cfr_out[WIDTH]) { 
  int ecg[WIDTH]; 
  cr[WIDTH];  
  cfr[WIDTH]; 
  int ecg_out_linear[WIDTH]; 
  int ecg_out_non_linear[WIDTH]; 
  int ecg_drift[WIDTH];  
  int ecg_filtered[WIDTH]; 
  int i, j, x; 
  ecg_drift[0] = 0; 
  // Stream data into the design 
  for (i = 1; i <= WIDTH; i = i + 1) { 
    ecg[i] = data_in[i]; 
  } 
  // Data processing 
  for (j = 1; j <= WIDTH; j = j + 1) { 
    // Linearity criterions calculation 
    linearity_criterion(ecg[j], &cr[j], &cfr[j]); 
    // Baseline drift extrapolation 
    non_linear(ecg[j], ecg_drift[j-1], 
&ecg_out_non_linear[j]); 
    // Baseline drift calculation 
    linear(ecg[j], ecg_drift[j-1], cfr[j], 
&ecg_out_linear[j]); 
    // Switch between linear and non linear 
    cr_switch(cr[j], ecg_out_linear[j], 
ecg_out_non_linear[j], &ecg_drift[j]); 
    // Subtract drift from the original signal 
    subtract(ecg[j], ecg_drift[j], 
&ecg_filtered[j]); 
  } 
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  // Stream data out 
  for (x = 1; x <= WIDTH; x = x + 1) { 
    data_out[x] = ecg_filtered[x]; 
    drift_out[x] = ecg_drift[x]; 
    cr_out[x] = cr[x];  
    cfr_out[x] = cfr[x]; 
  } 
} 
 

Functions are called inside static affine nested loops to 
process the data. Inputs and outputs of the functions are given 
as parameters. Output parameters are specified as addresses to 
variables where the result is stored. Feedbacks from the output 
drift to the linear and non-linear segment calculations are 
realized. 

First step in the specification is to stream in data into the 
design. After the actual processing starts with the first block 
witch is linearity criterion calculation. Functions for linear and 
nonlinear segment filtrations are present. Another function 
switches between the nonlinear and linear output based on the 
linearity criterion. The drift interference is subtracted by the 
original ECG signal. In the end the data is streamed out. 

B. KPN Model of Computation 

Compaan compiler is used to automatically generate KPN 
specification. This KPN specification can be used as a basis to 
generate the actual implementation of the device. It defines 
the dependencies between the nodes and connections between 
them. 

The KPN is simulated to automatically optimize the 
communication link sizes. Fig. 4 shows the produced KPN for 
drift removing from ECG using the Subtraction Procedure. 
Each function from the input specification is realized using a 
separate processing node. Additional processing nodes are 
used to stream data in and out from the design.  

 

C. Implementation 

Next step of the Compaan design flow is selecting target 
platform and mapping creation. In our case we use default 
target and mappings, since we want to generate a project to 
simulate. After we have the KPN, platform and mapping 
specifications ready, we can generate synthesizable VHDL 
code. Each node is mapped to a hardware processing core. It 
consists of read, execute and write section. Each execution 
section must be additionally filled with the actual processing 
equations. The manually filled code realizes the relation 
between the inputs and the outputs in each block. Here is a 
fraction of the code realizing the linearity criterion 
calculation: 

 
CR_CALC : process (CLK) 
  variable temp : std_logic_vector(31 downto 
0); 
begin 
  if rising_edge(CLK) then 
    if (RST='1') then 
      temp := (others => '0'); 
    else 
      temp := abs(XB(0) - (XB((25-1)/2)(30 
downto 0) & '0') + XB(25-1)); 
      if (temp(temp'high) = '0') then 
        cr <= "00" & temp_sum(31 downto 2); 
      else 
        cr <= "11" & temp_sum(31 downto 2); 
      end if; 
    end if; 
  end if; 
end process; -- CR_CALC 

 
At each step of the development flow we perform 

consistency check with the other stages to define if there are 
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Fig. 4. Subtraction Procedure Baseline Drift Removing KPN. 
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any errors. Thus errors are easy to be identified and fixed at 
earlier stages of the development.  

V. EVALUATION AND RESULTS  

Main target of our evaluation is to check if the generated 
design satisfies the application requirements. The 
development time is also a major aspect in this research. The 
system design must meet the functional and performance 
requirements and at the same time must be low power 
consuming and fault tolerant. 

We use Xilinx ISE Design Suite 14.7 to simulate and verify 
the design. Virtex 6 FPGA is used as a target platform. 
ML605 evaluation kit with 200 MHz system clock is used. 
Compaan automatically generates a test bench that streams in 
and out data from the design. We use ECG signal provided by 
the American Health Association to test our design. Finally 
we use Matlab to plot the signals in graphics. 

 

 
Fig. 5. Drift Removing Result Signals. 

 
Fig. 5 shows two samples with input and output result 

signals obtained by the simulation of the design: The results 
obtained prove that the integrated design realizes the 
subtraction procedure for drift removing according to the 
modeled algorithms. 

The design implementation of Compaan suggests that the 
processes inside are working asynchronously. The HW IP 
cores are working independently of each other, so they can 
work only when there is input data to be processed. This way 
it is achieved low power consumption. Another main point 

sufficient for low power consumption is the link sizes 
optimization that is automatically performed. 

A manual VHDL implementation of the subtraction 
procedure for baseline drift removing is presented in [1]. In 
the current work we use Compaan design flow to develop the 
same drift removing processing algorithm. Table 1 presents a 
comparison between the development times consumed in the 
two cases. The comparison points that using Compaan the 
development time required is considerably decreased. 

TABLE I 
DEVELOPMENT TIME CONSUMED 

 
Development Method Man-Months 

Manual VHDL Development 0.75 
Compaan Design Flow 0.25 

 
Automation of the generation and optimization benefit the 

development process. Using Compaan errors can be detected 
in earlier stages of the development. 

VI. CONCLUSION 

In this paper we present a high level synthesis of the 
subtraction procedure for drift removing from ECG. We use 
Compaan design flow to automatically generate an output 
design based on simple input specification. This considerably 
decreases the development time required. Compaan further 
optimizes the design and makes it fault tolerant and low 
power consuming.  

The automatic generation of the output makes the 
development faster and easier. Slight changes in the input 
specification can be made and a new design can be easily 
regenerated. This benefits the research and development 
process. Quicker further investigations in this field can be 
achieved. 
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