

Subtraction Procedure for Drift Removing from ECG:
High Level Synthesis with Compaan

Tsvetan Shoshkov1

Abstract – The electrocardiogram (ECG) is often contaminated
with drift interference. The subtraction procedure has proved its
efficiency in removing the drift from the ECG.

Development process of such device is prone and time
consuming. High level synthesis (HLS) solves these problems. In
this paper HLS tools are used to develop a device for drift
removing. FPGA is used as a target platform. Automatic output
generation is used to make the reconfiguration and further
development easier and faster.

Keywords – ECG, drift, FPGA, HLS, Compaan.

I. INTRODUCTION

Drift interference is often present in the Electrocardiogram
(ECG) due to complex mechanical and electro-chemical
electrode-to-skin processes. The subtraction procedure shows
good results in removing baseline drift from ECG signals [2].
The subtraction procedure algorithm is modeled in Matlab.
Based on these algorithms is developed a hardware design for
drift removing form ECG [1]. This design realizes the
subtraction procedure for real time operation. It is developed
using VHDL and FPGA as a target platform. This standard
manual development process using VHDL is error prone and
time consuming. The design often must be reconfigured which
is also a difficult process.

Fig. 1. Compaan Design Flow Basic Stages

In [5] are presented several system level development

technologies. Automated high level system generation helps
the development process and makes it easier and faster. In the
present work we choose Compaan to develop a design for
drift removing from ECG using the Subtraction Procedure.
Compaan is a high level synthesis tool [4]. Compaan is used
in the current work because it can provide full system
integration. It can implement not only the hardware and
software implementation but also the communication and
integration between them.

Compaan design flow basic stages are shown on fig. 1.
Compaan works with simple C code input specification. Khan

Process Network (KPN) model of computation is used [4].
KPN specification is automatically generated based on the
input. After that target platform and mapping specification are
defined. Then software and hardware implementation can be
automatically generated. Quick changes in the input
specification are enough to automatically generate a new
design and reconfigure the target platform.

II. SUBTRACTION PROCEDURE FOR BASELINE
DRIFT REMOVING

The process flow of the Subtraction Procedure is shown on
fig. 2. Its structure contains three main stages:
– Linear segments detection. Each ECG sample is checked

if it belongs to a linear segment by using appropriate
linearity criterion. The linearity is defined by comparing
the criterion with a predefined threshold M.

– Baseline drift calculation. If it is detected a linear
segment the baseline drift is calculated using a digital
filter and it is stored in a temporal FIFO buffer. In the
same time the baseline drift is subtracted from the linear
segment;

– Baseline drift extrapolation. If the current sample belongs
to a nonlinear segment the value of the drift is calculated
using the data stored in the temporal buffer and it is
subtracted from the signal in a nonlinear segment.

Fig. 2. Basic Structure of the Subtraction Procedure for Baseline
Drift Removing.

More details about the subtraction procedure for baseline

drift removing are given in [2], [3]. The present work is
focused on the implementation of the subtraction procedure
for ECG drift removing in real time using Compaan design
flow.

1Tsvetan Shoshkov is with the Faculty of Electronics at Technical
University of Sofia, 8 Kl. Ohridski Blvd, Sofia 1000, Bulgaria, E-
mail: tsh@tu-sofia.bg.

241

III. COMPAAN DESIGN FLOW

Compaan design flow is centered on Compaan compiler
and ESPAM tools [4]. The application must be specified as
parameterized static affine nested loop which is a subset of the
C language. Fig. 3 presents a detailed block diagram of the
used Compaan design flow.

Fig. 3. Compaan Design Flow.

Compaan compiler automatically generates a KPN model

of computation based on the input C specification. Processes
are further processed by Compaan to obtain hierarchical sub
networks. Target platform is selected to generate a platform
specification. Processes of the KPN specification are mapped
on HW (FPGA) and mapping specification is automatically
generated. HW is automatically generated by ESPAM based
on the specifications generated in the first step. [3]

Nodes implemented with HW are using processors, which
are composed of three separate blocks - read, execute and
write. The read block waits until there are tokens ready to be
read. A deep pipeline can be integrated in the execution block.
When there are processed tokens ready to be sent the write
block writes them into the corresponding communication link
if there is space available. This structure provides the nodes
with the ability to work independently of each other. Inside
each node there is a constant track of the data, using iteration
counters. Compaan tool allows simulation and verification of
the system at each stage of development. It can optimize the
size of the communication links based on the current
application. [3]

Compaan design flow is producing low power consuming
and fault tolerant designs. Fault tolerance is based on the
simplicity and higher abstraction of the input specification.
Constant track of the data inside each node also contributes to
make the system more fault tolerant. The asynchronous work

inside the design makes it low power consuming since each
node is working only where there is data to be processed.
Memory is main source of power consumption and
communication links size optimization is also a very
important feature.

The reconfiguration of the system using Compaan design
flow is easy. It requires modification of the input C code and
following the Compaan design flow to generate bit stream that
can be used to reconfigure the hardware.

IV. IMPLEMENTING THE SUBTRACTION
PROCEDURE FOR DRIFT REMOVING WITH

COMPAAN

The basic structure and elements of the Subtraction
Procedure are shown on fig. 2. We use the Compaan design
flow which is shown on fig 3 to implement the subtraction
procedure for drift removing. All development flow steps are
presented in this section. First input specification is created,
after that KPN is automatically generated. Finally
synthesizable VHDL code is automatically generated. More
details for each step are listed in the following subsections.

A. Input Specification

As a first step of the development it is created the input SW
specification. Short fraction of the C code input specification
is present to picture its main concepts:

#pragma compaan_procedure ecg_drift
void filter(int data_in[WIDTH], int data_out[WIDTH],
int drift_out[WIDTH], int cr_out[WIDTH], int
cfr_out[WIDTH]) {
 int ecg[WIDTH];
 cr[WIDTH];
 cfr[WIDTH];
 int ecg_out_linear[WIDTH];
 int ecg_out_non_linear[WIDTH];
 int ecg_drift[WIDTH];
 int ecg_filtered[WIDTH];
 int i, j, x;
 ecg_drift[0] = 0;
 // Stream data into the design
 for (i = 1; i <= WIDTH; i = i + 1) {
 ecg[i] = data_in[i];
 }
 // Data processing
 for (j = 1; j <= WIDTH; j = j + 1) {
 // Linearity criterions calculation
 linearity_criterion(ecg[j], &cr[j], &cfr[j]);
 // Baseline drift extrapolation
 non_linear(ecg[j], ecg_drift[j-1],
&ecg_out_non_linear[j]);
 // Baseline drift calculation
 linear(ecg[j], ecg_drift[j-1], cfr[j],
&ecg_out_linear[j]);
 // Switch between linear and non linear
 cr_switch(cr[j], ecg_out_linear[j],
ecg_out_non_linear[j], &ecg_drift[j]);
 // Subtract drift from the original signal
 subtract(ecg[j], ecg_drift[j],
&ecg_filtered[j]);
 }

242

 // Stream data out
 for (x = 1; x <= WIDTH; x = x + 1) {
 data_out[x] = ecg_filtered[x];
 drift_out[x] = ecg_drift[x];
 cr_out[x] = cr[x];
 cfr_out[x] = cfr[x];
 }
}

Functions are called inside static affine nested loops to
process the data. Inputs and outputs of the functions are given
as parameters. Output parameters are specified as addresses to
variables where the result is stored. Feedbacks from the output
drift to the linear and non-linear segment calculations are
realized.

First step in the specification is to stream in data into the
design. After the actual processing starts with the first block
witch is linearity criterion calculation. Functions for linear and
nonlinear segment filtrations are present. Another function
switches between the nonlinear and linear output based on the
linearity criterion. The drift interference is subtracted by the
original ECG signal. In the end the data is streamed out.

B. KPN Model of Computation

Compaan compiler is used to automatically generate KPN
specification. This KPN specification can be used as a basis to
generate the actual implementation of the device. It defines
the dependencies between the nodes and connections between
them.

The KPN is simulated to automatically optimize the
communication link sizes. Fig. 4 shows the produced KPN for
drift removing from ECG using the Subtraction Procedure.
Each function from the input specification is realized using a
separate processing node. Additional processing nodes are
used to stream data in and out from the design.

C. Implementation

Next step of the Compaan design flow is selecting target
platform and mapping creation. In our case we use default
target and mappings, since we want to generate a project to
simulate. After we have the KPN, platform and mapping
specifications ready, we can generate synthesizable VHDL
code. Each node is mapped to a hardware processing core. It
consists of read, execute and write section. Each execution
section must be additionally filled with the actual processing
equations. The manually filled code realizes the relation
between the inputs and the outputs in each block. Here is a
fraction of the code realizing the linearity criterion
calculation:

CR_CALC : process (CLK)
 variable temp : std_logic_vector(31 downto
0);
begin
 if rising_edge(CLK) then
 if (RST='1') then
 temp := (others => '0');
 else
 temp := abs(XB(0) - (XB((25-1)/2)(30
downto 0) & '0') + XB(25-1));
 if (temp(temp'high) = '0') then
 cr <= "00" & temp_sum(31 downto 2);
 else
 cr <= "11" & temp_sum(31 downto 2);
 end if;
 end if;
 end if;
end process; -- CR_CALC

At each step of the development flow we perform

consistency check with the other stages to define if there are

< proc5 >

< proc4 >

linearity_criterion

linear

cr_switch

< 0 >

subtract

non_linear

< proc1 > < proc3 >

< proc2 >

cfr_out

drift_out

data_out

cr_out

data_in

ND_11

ND_10

ND_3

ND_5

ND_6

ND_7

ND_4

ND_2 ND_9

ND_8

Fig. 4. Subtraction Procedure Baseline Drift Removing KPN.

243

any errors. Thus errors are easy to be identified and fixed at
earlier stages of the development.

V. EVALUATION AND RESULTS

Main target of our evaluation is to check if the generated
design satisfies the application requirements. The
development time is also a major aspect in this research. The
system design must meet the functional and performance
requirements and at the same time must be low power
consuming and fault tolerant.

We use Xilinx ISE Design Suite 14.7 to simulate and verify
the design. Virtex 6 FPGA is used as a target platform.
ML605 evaluation kit with 200 MHz system clock is used.
Compaan automatically generates a test bench that streams in
and out data from the design. We use ECG signal provided by
the American Health Association to test our design. Finally
we use Matlab to plot the signals in graphics.

Fig. 5. Drift Removing Result Signals.

Fig. 5 shows two samples with input and output result

signals obtained by the simulation of the design: The results
obtained prove that the integrated design realizes the
subtraction procedure for drift removing according to the
modeled algorithms.

The design implementation of Compaan suggests that the
processes inside are working asynchronously. The HW IP
cores are working independently of each other, so they can
work only when there is input data to be processed. This way
it is achieved low power consumption. Another main point

sufficient for low power consumption is the link sizes
optimization that is automatically performed.

A manual VHDL implementation of the subtraction
procedure for baseline drift removing is presented in [1]. In
the current work we use Compaan design flow to develop the
same drift removing processing algorithm. Table 1 presents a
comparison between the development times consumed in the
two cases. The comparison points that using Compaan the
development time required is considerably decreased.

TABLE I
DEVELOPMENT TIME CONSUMED

Development Method Man-Months

Manual VHDL Development 0.75
Compaan Design Flow 0.25

Automation of the generation and optimization benefit the

development process. Using Compaan errors can be detected
in earlier stages of the development.

VI. CONCLUSION

In this paper we present a high level synthesis of the
subtraction procedure for drift removing from ECG. We use
Compaan design flow to automatically generate an output
design based on simple input specification. This considerably
decreases the development time required. Compaan further
optimizes the design and makes it fault tolerant and low
power consuming.

The automatic generation of the output makes the
development faster and easier. Slight changes in the input
specification can be made and a new design can be easily
regenerated. This benefits the research and development
process. Quicker further investigations in this field can be
achieved.

REFERENCES

[1] Ts. Shoshkov, G. Mihov, “Subtraction Procedure for Removing
the Baseline Drift from ECG Signals: Adaptation For Real Time
Operation With Programmable Devices”, ICEST 2013, Ohrid.

[2] G. Mihov, I. Dotsinsky. “Subtraction Procedure For Removing
The Baseline Drift From ECG Signals”, Annual Journal of
Electronics, pp. 118-122, 2010.

[3] G. Mihov, I. Dotsinsky, C. Levkov, R. Ivanov, “Generalised
Equations and Algorithm of the Subtraction Procedure for
Removing Power-line Interference from ECG”, Proceedings of
the Technical University of Sofia, Vol. 58, b. 2, Sofia, pp. 31-
38, 2008.

[4] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, Ed
Deprettere. “System Design using Khan Process Networks: The
Compaan/Laura Approach”, DATE, Paris, 2004.

[5] A. Gerstlauer, C. Haubelt, A. Pimentel, T. Stefanov, D. Gajski,
J. Teich, “Electronic System-Level Synthesis Methodologies”,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), vol. 28, No. 10, pp. 1517-1530,
2009.

s

-0.2
0

0.4
0.8
mV

-0.2
0

0.4
0.8

-0.2
0

0.4
0.8

-2

0

2

Input signal with filteredpower-line interferenceand tremor

Linearity criterion course, Second criterion course

Outputs l with filtereddriftigna

Baseline drift

1 2 3 4 5 6

s

-0.2
0

0.4
0.8
mV

-0.2
0

0.4
0.8

-0.2
0

0.4
0.8

-2

0

2

Input signal with filteredpower-line interferenceand tremor

Linearity criterion course, Second criterion course

Outputs l with filtereddriftigna

Baseline drift

1 2 3 4 5 6

244

