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Abstract – An interactive population-based method is 
presented in the paper. It is designed to solve multiple objective 
convex integer optimization problems. A heuristic procedure is 
used to speed up the search process. The method finds exact non-
dominated solutions. The properties of this method are proven 
theoretically. 
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I. INTRODUCTION 

The evolutionary multi-objective optimization (EMOO) is a 
popular field for research and development of methods, which 
perform well on a wide spectrum of problems [3, 7, 8]. The 
Evolutionary Optimization (EO) methods apply an approach, 
in which the iterations are performed on a set of solutions 
(called population). The shortcoming, when a population of 
solutions is used, is the increase of computational cost and of 
the memory needed for the execution of one iteration. To 
overcome this shortcoming the research efforts are focused in 
the following two directions: 

    – speeding up the moving of the whole population, 
keeping the dispersal in the same time with the aim the whole 
non-dominated set to be investigated. 

    – speeding up the choice of one compromise solution by 
the DM moving quickly the population to solutions, which are 
interesting (desired) and acceptable for him/her. 

In the development of the method, presented in this paper, 
the authors applied the second approach. 

The problem considered in this paper belongs to the class of 
NP-hard optimization problems [6]. There does not exist an 
exact algorithm, which is able to solve these problems in time, 
depending polynomially on the problem input data length or 
on the problem size.  

II. PRELIMINARY CONSIDERATIONS 

The integer multi-objective convex optimization problem 
can be stated as follows: 

         Min   f(x) = [f1(x), f2(x), …, fk(x)]T                 (1) 
subject to:  gj(x) ≤ 0,            j = 1,2,..., m;          (2) 

    xi
(L) ≤ xi ≤ xi

(U),  i = 1,2,…, n;          (3) 
    x ∈ Zn,             (4) 

where gj(x), j = 1,2,…, m; are convex functions and fi(x),  
i = 1,2,…, k; are convex functions; xi

(L) and xi
(U) , i = 1, 2,…, n  

are the known lower and upper bound of the variable xi  
respectively.  

The solution x∈Zn denotes a vector of n decision variables: 
x = (x1, x2,…, xn)T. The constraints (2)-(4) constitute a feasible 
decision domain V ⊂ Zn. 

S = f(V) = { s = f(x), x∈V}  is a k-dimensional objectives’ 
region, S ⊂ Rk. 

We shall use the term “solution” as a vector of variables in 
the decision space and the term “point” as a vector of the 
criteria values in the objectives’ space.  

Definition: A solution x(1) is said to dominate the solution 
x(2), if the following two conditions are true: 

1. The solution x(1) is not worse than x(2) in all the 
objectives. Thus, the solutions are compared based on their 
objective function values. 

2. The solution x(1) is strictly better than x(2) in at least one 
objective. 

All the points which are not dominated by any other point s 
∈ S, are called Pareto-optimal points. They constitute together 
the Pareto-optimal front [1, 3] in the objectives’ space. 

There are two basic approaches for solving the problem (1)-
(4): The first one is to choose one "compromise / final" non-
dominated solution among many others. Person called 
Decision Maker (DM) evaluates the solutions obtained during 
the search process. A number of methods realizing this 
approach exist [1, 2, 3, 8]. The second approach is to find the 
whole set of non-dominated points (efficient frontier). This 
problem is solved completely only for linear case [4, 5].  

Evolutionary methods seems to be very suitable to apply 
the second approach, namely to find an approximation for the 
whole non-dominated set (see for example [1, 10]). 

On the other hand, if the population cardinality is too large 
this leads to computational difficulties, such like calculation 
time, dispersion of the population, large memory used etc. 

Here an evolutionary method is proposed, which applies the 
first approach. It performs with limited population, but large 
enough to approximate locally the efficient frontier driven by 
the DM's preferences. The process is repeated until a final 
solution is found. Thus we exploit the advantages of EO 
approach to generate a good approximation of efficient 
frontier. Note that when using traditional scalarizing methods 
for MO problems the question arises – how to support the DM 
in setting his/her preferences. Some of those methods use 
trade-off, other use search in a reference direction, or generate 
a number of additional points [12, 13, 15, 16, 17]. The aim of 
the method proposed here is to support the DM in the 
presenting his/her preferences as reference points. 

The most popular EO algorithms for mulicriterial problems 
are NSGA, NSGA-II, SPEA, SPEA2, but they have some 
disadvantages (see [18]): 
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1)  The non-dominated sorting of NSGA-II algorithm 
requires population, twice  larger  in size  in comparison to the 
other evolutionary algorithms, like SPEA and SPEA2. 

2) The number of objectives as a convergence factor is 
considered in [18]. The results showed that the performance 
of NSGA-II and SPEA2 deteriorates substantially as the 
number of objectives increases, but SPEA 2 seems to have 
better performance than NSGA-II in higher dimensional 
objective spaces [19]. NSGA-II, for example doesn’t have 
good convergence for problems with six or more objectives. 

To overcome the above mentioned disadvantages and to 
increase the efficiency of the proposed method in finding out 
Pareto-optimal solutions, which are close to the DM’s 
preferences, here are proposed the following improvements: 

• We use a heuristic procedure to accelerate the moving 
the whole population towards the Pareto front. It is 
similar to those, described in [9]. In this way we 
improve the speed performance of the method. 

• We include an interaction step, where the DM sets a 
reference point f r in the objectives’ space like in [14]. 
Our method suggests several reference points to DM, 
who has the possibility periodically to choose one of 
them or to input another one in dependence of his/her 
preferences, to change his/her preferences and to 
replace the former reference point by a new one. This 
step ensures the convergence of the proposed method 
to a desired non-dominated solution. 

III. THE NEW EXACT INTERACTIVE METHOD 

We use an internal population P of N solutions and an 
explicitly defined external population Pe. The population Pe 
contains the best k non-dominated solutions found during the 
search (k is the number of objectives in (1)). 

We propose a heuristic procedure to move quickly the 
internal population to the Pareto-optimal front. For this 
purpose we calculate the direction y = Ce – Ci, where Ce is 
the weight center of Pe and Ci is the weight center of last 10% 
of solutions in P, relevant to the points with worst objectives 
values. The points in P are ordered in an ascending order 
according to the number of solutions in P, dominated by each 
point. The y vector is directed to the Pareto-optimal front, 
because the members of Pe dominate all members of P. Then 
we move the population as close as possible to the Pareto-
optimal front (the movement of the population in the solution 
space is limited by the boundaries of the feasible domain, 
defined by the system (2)-(3)). We perform consecutive steps 
calculating solution x’ = x + α.y , where α is the step length. In 
both cases: 1) when x’ violates any constraint in the system 
(2)-(3) and 2) when the current step in y – direction leads to 
deteriorating the sum of criteria values, the corresponding 
feasible solution is calculated using the Golden section 
method. In this way a line search along the segment xx’ is 
performed and the found solution is rounded off to an integer 
solution. 

There are two possibilities in regard to the location of 
Pareto-optimal front in the solution space: 

1) The Pareto-optimal front is located on the boundary of 
the feasible domain. 

2) The Pareto-optimal front is located inside the feasible 
domain. 

We present below the scheme of heuristic procedure for 
moving the solutions of population to reach the Pareto-
optimal front in both cases: 

 

Scheme of the new moving heuristic procedure MHP 

Step 1. Calculate the function  
1

( ) ( )
k

i
i

x xη η
=

= ∑  ,   

where  ηi(x) = ( ) ( ),max ,max ,min( ) /i i i if f x f f− − . Here 
,maxif  and 

,minif are the maximal and the minimal objective value, 

and ( )if x is current value for the i-th objective, i = 1,…, k.  
 

Step 2. Find the maximal value x* of the function 
( )xη over the rays defined by each population solution 

belonging to Pe and the vector y.  The Golden section method 
is used for this calculation in both cases: 1) when violating a 
constraint of system (2)-(3) occurs or 2) when the sum of 
criteria values gets worse.  
 

The above heuristic is based on the following prerequisites: 
1) The direction y is an improving direction by its 

construction. This means that between every two different 
solutions x1 and x2 lying on a ray y→ with starting solution Ce 
the following relations are satisfied: f(x1) ≤ f(x2) or f(x1) ≥  
f(x2), but the solutions x1 and x2 are not incomparable. 

2) The function ( )xη  obtains its maximum at a point which 
is located on the Pareto optimal front. 

3)  0 ≤  ( )i xη ≤ 1, for i= 1, …, k. 
4) 1 ≤  ( )xη ≤ k where k is the number of objectives. 
 

The following results are proven:  
   Lemma 1: 0 ≤  ( )i xη ≤ 1, for all i= 1, …, k. 

   Proof:   It follows from the construction of ( )i xη for all  i= 
1, …, k.   □ 

   Lemma 2: The function values of 
1

( ) ( )
k

i
i

x xη η
=

= ∑ are within 

interval [1, k] for convex multiple objective problems. 
   Proof: 
   It follows from the construction of ( )xη  and from the 
properties of efficient frontier of convex multiple objective 
problems.  □ 

   Theorem 1: The function 
1

( ) ( )
k

i
i

x xη η
=

= ∑ is monotonously 

increasing function over Ωd = d ∩ X, where d is a direction in 
the space of decision variables such that f(d) = {  f1(d), f2(d), 
…, fk(d) } intersects the efficient frontier in f(X) ⊂ Rk.    
   Proof:    It   follows   from   the  convexity  of   the   separate 
objectives, the convexity of vector function f(x) = { f1(x), f2(x), 
…, fk(x)}. □ 
   Remark: Such directions we will call directions of 
improving. 
   Corrolary:   The  maximum  of  the  function  ( )xη ,  where 
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1
( ) ( )

k

i
i

x xη η
=

= ∑ ,  belongs  to  the  efficient  frontier  over  each 

improving direction. 
   Theorem 2: The directions used in the heuristic are the 
directions of improving. 
   Proof: It follows from the construction of the direction d in 
the heuristic procedure. Namely if we assume the 
contradiction that the direction is not improving, i.e. there 
exists two points x(1) and x(2) from d such that: 
   1) x(2) = x(1) + ρ.d(1), where ρ is positive number, d(1) is the 
defining vector along the direction d with ||d(1)|| = 1. 
   2) (2) (1)( ) ( )x xη η≤  
But this  contradicts  to the way  of construction  of improving 
directions ("upper - right" for the "max" optimization 
problems) in the heuristic procedure. 

A hybrid method is presented in [11]. The basic differences 
in comparison to the method presented here are as follows: 
   1) The population ranking here is not based on a 
scalarization fitness function. Instead the Euclidean distance 
to the reference point is used. 
   2) The improving direction is determined in a different way. 
Namely, here it is defined as the difference between the 
weight centers corresponding to the best 10% and to the worst 
10% of solutions in the current population. 

Scheme of the proposed exact interactive method 
Step 1. Set the iteration counter h = 0. Generate N + k 

uniform distributed solutions’ vectors around the Chebyshev 
center Ch of the feasible domain by using a deviation of ±δ, 
where δ is a % of the corresponding component variation (for 
example, δmax = ±5%). Use N of them to create the initial 
population Ph and k of them to create the external popul. Pe.  

Step 2. Perform the heuristic procedure MHP to move Ph  
towards the Pareto-optimal front.  

Step 3. Arrange the solutions in Ph according to their 
Euclidean distance to a candidate reference point f r set by 
DM. Compute the weight centers Cbest and Cworst 
correspondingly of first 10% and of last 10% of solutions in 
Ph, relevant to the reordered points. (Another possibility is, 
DM to make a choice of up to 5 best solutions and up to 5 
worst solutions in Ph. Then Cbest and Cworst are calculated 
correspondingly.) Form the moving direction d = Cbest – Cworst.  
Compute a series of solutions t l = Cbest + l*d, l = 1,2,…; and 
present the corresponding points f(t l) to the DM as possible 
reference points. The DM chooses one of them or sets another 
one candidate ref. point, according to his/her preferences.  

Step 4. Form a direction with an origin – Chebyshev 
center Ch and an end – the reference solution xr, corres-
ponding to f r. Then move this reference solution as close as 
possible to the Pareto-optimal front (reaching the boundaries 
of the system (2)-(3) if necessary) along this direction by 
using the Golden section method for line search as in the 
heuristic procedure MHP. The solution xr* is obtained. Let us 
denote the corresponding reference point by f r*.  

Step 5. Compute the weight center Ci of population Ph 
and the vector d r with an origin Ci and an end – the solution, 
corresponding to f r*. Move the population Ph with a step size 
1 along this direction:   {Pnew} = {Ph} + 1.d r.  

Step 6.  Some solutions in the Pnew may be infeasible. 
For each infeasible solution xi in Pnew perform the procedure 
in Step 4 along xiCh to move it to the feasible domain. For 
each feasible solution perform also the procedure in  Step 4  to 
move it as close as possible to the Pareto-optimal front. 

Step 7. Arrange all the points corresponding to the 
solutions in Pnew according to their Euclidean distance to the 
reference point f r*. The first ten points are shown to the DM 
and if he/she is satisfied by one of them, go to Step 8, 
otherwise set h=h+1, Ph=Pnew, and go to Step 3.  

Step 8. End.  

IV. ILLUSTRATIVE EXAMPLE 

We consider the following problem: 
     Min    f1 = 1/(x1+1), 
     Min    f2 = 1/(x2+1), 

subject to:    x1
2 + 100x2

2  ≤ 106;   
            0  ≤  x1  ≤  1000;        
            0  ≤   x2   ≤  100;  
            x1, x2 ∈ Z. 

 
The search process of one iteration is presented on Fig.1. 

 
 
                     Fig. 1. Performance of one iteration 

 
Legend: 

 *  –  initial population P0;  □  – members of Pe0 
 ∆  – weight centers Ci and Ce   x  – solutions t j at Step 3 
+  –  Ph at the end of  Step 2;    – ref. solution xr* 
o  – members of  final population 
 

  We denote values si
r =  si.103. The initial internal 

population at Step 1 is:  x1 = (500; 50), s1
r = (1.996; 19.608), 

x2 = (506; 29), s2
r = (1.972; 33.333), x3 = (482; 30), s3

r = 
(2.070; 32.258), x4 = (493; 52), s4

r = (2.024; 18.868), x5 = 
(477; 41), s5

r = (2.092; 23.810), x6 = (485; 35), s6
r = (2.058; 

27.778), x7 = (504; 40), s7
r = (1.980; 24.390), x8 = (487; 41), 

s8
r = (2.049; 23.810), x9 = (488; 27), s9

r = (2.045; 35.714), x10 
=(479; 36), s10

r =(2.083; 27.027);. Its weight center is Ci = 
(497; 28). The initial external population is x1=(508; 43), 
s1

r=(1.9646; 22.7272), x2=(489; 54), s2
r=(2.0408; 18.1818);. 

Its weight center is Ce = (498.5; 48.5). Worst solutions are x2 
and x9. Ci = (497; 28). The direction y at Step 2 is y = [1.5; 
20.5]. The obtained weight centers at Step 3 are: Cbest = 
(492.5; 87) and – Cworst = (496; 86).  Direction d = (–3.5; 1).  
The following solutions: t1=(489; 88), t2=(485; 89), t3=(481; 
90) are computed at Step 3. The corrected reference solution 
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and the reference point calculated at Step 4 are xr= (435; 90),  
f r = (2.2936; 10.989). At Step 5 the weight center Ci = (493.5; 
86.6). The final population after the first iteration is as 
follows: x1 = x2 = x7 = (455; 89), s1

r = s2
r = s7

r = (2.1930; 
11.1111), x3 = x4 = x8 = x9 = x10 = (435; 90), s3

r = s4
r = s8

r = s9
r 

= s10
r = (2.2936; 10.989), x5 = (433; 90), s5

r = (2.3041; 
10.989), x6 = (442; 89), s6

r = (2.2573; 11.1111);        
  The DM is satisfied with the found solution x3 and the 

procedure terminates. 
  For comparison at the same starting conditions the 

obtained population after the first SPEA iteration is:  
  x1 = (500; 50), s1

r = (1.996; 19.608), x2 = (506; 29), s2
r = 

(1.972; 33.333), x3 = (482; 30), s3
r = (2.070; 32.258), x4 = 

(493; 52), s4
r = (2.024; 18.868), x5 = (477; 41), s5

r = (2.092; 
23.810), x6 = (508; 54), s6

r = (1.964; 22.727), x7 = (504; 40), 
s7

r = (1.98; 24.39), x8 = (489; 43), s8
r = (2.04; 22.73), x9=(493; 

40), s9
r =(2.024; 24.39), x10 =(504; 52), s10

r =(1.980; 18.868); 

V. CONCLUSIONS 

The proposed exact interactive evolutionary method has the 
following advantages:  

It is an interactive method. The Decision Maker is 
supported in the choice of a suitable reference point, so that 
he/she can easily direct the search process to the desired 
region.  

The method does not generate an approximation of whole 
efficient frontier. The DM has the possibility to investigate 
different possibly small parts from efficient frontier according 
to his/her preferences.  

The method generates exact Pareto efficient solutions. The 
population movement to the Pareto frontier is realized by an 
accelerated heuristic procedure. 

Increasing the number of objectives does not affect the 
performance of the search procedure. 

The proposed method can be used for solving linear and 
nonlinear multiple objective optimization problems, having 
continuous or integer variables. 
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