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Abstract – This article investigates performance of artificial 
neural networks (ANNs) in detection of correlated signals. In 
order to cover the whole azimuth plane, circular antenna array is 
employed at the receiver. Separate ANN configurations are 
developed for detection of two and three incoming signals, and 
their results are analysed with regard to distance between 
sources and degree of correlation. The estimation results are 
compared with the reference data and the MUSIC algorithm.  
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I. INTRODUCTION 

Direction of arrival (DOA) estimation of correlated signals 
is often required in practical applications. Due to the 
multipath propagation of RF signals, a receiving array collects 
direct signals from sources as well as fractionally delayed 
multipath components that have bounced off from some 
nearby reflective surfaces.  

Detection of correlated signals is not always an easy task. 
Standard algorithms for detection of uncorrelated signals [1], 
[2] could be modified in order to provide detection of 
correlated sources as well. The drawback of these algorithms 
is that they include additional calculations to decorrelate 
signals. This procedure is useful but, on the other hand, it 
reduces the effective aperture of the antenna array obtaining 
the results of lower resolution [3]. 

In this paper, artificial neural networks (ANNs) are 
employed to provide DOA estimates of correlated signals. 
Due to their universal approximation capability and parallel 
processing of input data, estimation results are provided 
almost instantaneously. In this way, complex calculations over 
spatial covariance matrices are avoided. Application of ANNs 
in detection of correlated signals does not degrade resolution 
of DOA estimates. In the paper, we analyze detection of two 
and three EM signals, at different mutual distances, azimuth 
positions and with various correlation coefficients. Therefore, 
three levels of generalization of ANN models are achieved. 
Advantage over MUSIC algorithm is illustrated on several 
examples of detecting closely spaced and strongly correlated 
sources.  

 

II. DATA MODEL 

A uniform circular array (UCA), composed of N equally 
spaced omnidirectional elements, is illustrated in Fig 1. The 
radius of the circle is r while the distance between adjacent 
elements in the array is d=λ/2 (where λ is the wavelength of 
impinging signals). The angular position of the n-th element 
of the array is given by γi=2πi/N, i=0, 1,..., N-1. DOA of the 
kth incoming signal is determined by the azimuth and 
elevation angles φk and θk, respectively. The array manifold 
vector ak(φk, θk), k=1, 2, ..., K is given by 
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Further, a N x K steering matrix A and signal model can be 
defined as follows 
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where n(t) is the N×1 noise vector, x(t) is the N×1 data vector 
and s(t) is the K×1 signal vector given by 
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where ρi denotes the relative amplitude and phase between the 
i-th and l-th source (ρl=1). 
 

 
 

Fig. 1 Uniform circular antenna array (UCA) 
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The spatial covariance matrix can be estimated as follows 
IASAxxR 2)}()({ σ+== HH ttE          (5) 

 
where E{} is the expectation operator, H denotes the complex 
conjugate transpose operation, σ2 is the noise variance, I is the 
identity matrix, S is K×K signal covariance matrix given by 
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where c=[ρ1 ρ2 . . . ρK]T. It can be observed that the signal 
subspace of matrix R is of rank one instead of K, and the 
noise subspace is orthogonal to Ac instead of the columns of 
A. This implies the failure of the subspace based method 
when the matrix R is used in this form. 

III. DOA ESTIMATION BY RBF NEURAL 
NETWORK 

Application of Radial Basis Function Neural Networks 
(RBF-NN) in the area of DOA estimation is based on the 
inverse mapping to the one that an antenna array performs. 
That is the mapping G: CN→RK from the space of antenna 
array outputs {x(t)=[x1(t) x2(t) … xN(t)]T}to the space of DOAs 
Φ=[φ1 φ2 … φK]T. The input data of RBF-NN is the spatial 
covariance matrix R of the antenna array outputs, and DOAs 
of users’ signals are neural network responses.  
The DOAs from the received signal x can be estimated as 
follows 

φ=f(x)   (7) 

An RBF-NN approximates the reverse mapping function f(x) 
as a weighted sum of the radial basis function 
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where cj is the central vector of the jth neuron, 2
jσ is the 

spread while ωjm is a weight. These parameters are determined 
through the training process of the RBF-NN. In the equation 
(8), ‖·‖ is the Euclidean norm and J denotes the number of 
hidden neurons [4]. 

An RBF-NN is composed of input, hidden and output layers. 
Number of neurons in the input layer of the network depends 
on the dimensionality of R matrix. Since R is an N × N square 
matrix and having in mind that ANNs cannot operate with 
complex numbers, there should be 2N² neurons in the input 
layer of the network. In the case of correlated signals, upper 
triangular part of matrix R is used to represent signals at the 
array output. Therefore, all inputs are organized into a N²-
element vector z. Before it is applied to the input layer of the 
RBF-NN, the input vector z is normalized with its norm, znorm= 
z/||z||. The jth neuron in the hidden layer has the nonlinear 
response that can be written as follows 
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where b1j represents a real coefficient. Using this expression 
the output of the RBF-NN can be calculated by 

∑ =
+












 −
−=

J

j k
j

jnorm
kjjnormk bbg

1 22

2

1 2
exp)(

σ
ω

cz
z   (10) 

where b2k is a bias of the output layer while ωkj is the weight 
between the kth neuron in the output layer and jth neuron in the 
hidden layer.  

IV. RESULTS 

We consider DOA estimation of two and three correlated 
sources, respectively. Since the number of outputs of an RBF-
NN is fixed, separate configurations are developed using the 
incorporated function provided by the neural network toolbox 
of MATLAB [5]. The training set is prepared of the training 
vectors corresponding to different positions of EM sources. 
The input to the network is the upper triangular part of matrix 
R, organized into a vector, while the desired outputs are 
azimuth positions of sources. Test samples are used to evaluate 
the performance of the developed neural networks. The test set 
is formed from data that have not been involved in the training 
process. However, these data must belong to the same 
distribution as the training data.  

To collect data for the training and test set, it is assumed that 
a 10-element circular antenna array is positioned at the 
receiver. Signals that have to be detected are narrowband with 
SNR of 20 dB. To estimate spatial covariance matrix 1024 
signal snapshots are used. The correlation of signals is varied 
between 0 and 1. 

A. Detection of two correlated sources 

Let’s suppose that two EM sources are located at different 
azimuth positions from -180° to 180°. Mutual distance 
between sources is varied as follows: 2°, 5°, 10°, 20°, 30°, 40°, 
50°, 60°, 70°, 80°, 90°, 100°, 110° and 120°. The starting 
positions of two sources are -180° and -180°+dist, where dist 
denotes the distance between sources. The sources are further 
moved towards 180°, in steps of 1°. Correlation between 
signals is introduced through the correlation coefficient which 
took values 0, 0.5 and 1, respectively. To validate the 
performance of trained RBF-NN models, a test set is formed 
using mutual distances 3°, 15°, 35°, 55°, 75° and 95°, and step 
of 1°. The correlation coefficient is varied as follows 0.1, 0.4 
and 0.7. Accordingly, the networks are trained with 6420 
samples and tested with 3090 samples. 

Following the previously described procedure, a number of 
neural models are developed and among them, the best model 
is chosen for further analysis. In our case, the network with 
correlation coefficient of 0.999 and average error of 0.58% has 
demonstrated the best performance. The hidden layer of the 
network is composed of 498 neurons. 
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Fig. 2 Response of the RBF-NN model for detection of two signals  
(-- source 1, ˗ source 2), ρ=1 

 

 

Fig. 3 RMSE versus correlation between signals  
 

The response of the network for test data is presented in Fig. 
2. Correlation between signals is 1, and distances are 7°, 15° 
and 35°, respectively. It can be observed that network has quite 
good performance for test samples. Even for the separation of 
7°, it is able to distinguish two sources. Fig. 3 illustrates 
dependence of RMSE (Root Mean Square Error) of DOA 
estimates on the correlation. We can conclude that the network 
provides almost uniform response for all test values of 
correlation. 

B. Detection of three correlated sources 

Similar to the case with two sources, three sources are 
assumed to be at mutual distances of 2°, 5°, 10°, 20°, 30°, 40°, 
50°, 60°, 70°, 80°, 90°, 100°, 110° and 120°. Initially, all 
sources are positioned at azimuth angles of -180°, -180°+dist 
and -180°+2·dist, and then moved towards 180° in steps of 1°. 
The correlation between signals is varied from uncorrelated 
case,   weakly   correlated   up   to   fully   coherent   signals  

 

Fig. 4 Response of the RBF-NN model for detection of three sources 
(-- source 1, ˗ source 2, - source 3), ρ=1 

 

 

Fig. 5 RMSE versus correlation between signals 
 

(coefficients 0, 0.5 and 1, respectively). The test set is formed 
assuming mutual distances of 12°, 23°, 32°, 64° and 96°. The 
correlation between signals is 0.1, 0.4 and 0.7. Hence, the 
network is trained with 10440 and tested with 4053 samples. 
After the training procedure is finished, the test statistics of 
the obtained neural models are analysed. The best neural 
model has 958 hidden neurons, the correlation coefficient of 
0.9993 and average error of 0.7%.  

In Fig. 4, response of the RBF-NN is illustrated for three 
mutual distances between sources and correlation coefficient 
of 1. The response of the network appropriately follows the 
movement of three sources from -180° to 180°. RMSE of 
DOA estimates is presented in Fig. 5 for each source 
separately. The second source is the most accurately detected 
and almost not dependent on the correlation. Estimation error 
of the first and the third source is slightly more expressed and 
rises as the correlation between signals becomes stronger. 
Also, it can be observed that neural model adequately separates 
three sources at small mutual distances such as 7°. For 
instance, the MUSIC algorithm has a problem to separate 
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closely spaced sources even when the signals are 
uncorrelataed. In the case of correlated signals, the algorithm 
has problem also with more separated sources. This problem is 
illustrated in Figs. 6, 7, 8 and 9. Corresponding outputs of 
RBF-NNs are given in Table 1.  
 

 
Fig. 6 MUSIC spectrum of two correlated signals (ρ=1) at azimuth 

positions φ1=-10° and φ2=5° 
 

 
Fig. 7 MUSIC spectrum of two correlated signals (ρ=1) at azimuth 

positions φ1=-40° and φ2=-5° 
 

 

Fig. 8 MUSIC spectrum of three correlated signals (ρ=1) at azimuth 
positions φ1=-2°, φ2=10° and φ3=22° 

 
Fig. 9 MUSIC spectrum of three uncorrelated signals (ρ=0) at 

azimuth positions φ1=-2°, φ2=10° and φ3=22° 

TABLE I 
DOA ESTIMATES BY RBF-NNS 

Actual azimuth angles 
(deg) 

DOA estimates (deg) 

φ1=-10 φ2=5  φ1es=-8.48 φ2es=2.25  

φ1=-40 φ2=-5  φ1es=-41.47 φ2es=-2.32  

φ1=-2 φ2=10 φ3=22 φ1es=-4.97 φ2est=9.09 φ3es=23.16 

φ1=-2 φ2=10 φ3=22 φ1es=-3.82 φ2es=9.64 φ3es=23.05 
 

V. CONCLUSION 

In this paper, detection of correlated EM signals is 
presented. Neural networks are used as a tool to extract the 
information about directions of arrival from the spatial 
covariance matrix. It is shown that networks are able to deal 
with differently positioned and correlated signals. Correlated 
and closely spaced sources are appropriately separated and 
detected. The accuracy of results could be further improved 
using more precise data on the positions of sources in the 
training set. 
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