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Abstract – An analysis of class matrices for complex 

Hadamard transformation (CHT) is presented. The concept of a 
family of CHT’s is introduced and such a family is proposed to 
represent discrete signals and systems. Several properties of this 
family are outlined. The generation of the transformation 
matrices commences from the basic Walsh-Hadamard 
transformation matrix. 
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I. INTRODUCTION 

 
In this article, a class matrices for discrete orthogonal 

transformations with elements which are integer-valued 
complex numbers and may be considered as systems of 
complex Walsh functions are introduced. These transforms 
may be useful in applications where the need for complex-
valued discrete orthogonal transforms arises, such as digital 
signal processing, spectral analysis, pattern recognition, 
digital coding, computational mathematic and etc. These 
systems of functions and transformations are called complex 
Hadamard transforms (CHT’s) and are confined to four 
complex values (±1 and ±j). Dimensionality reduction in 
computation is a major signal processing application. Stated 
simply, these transform coefficients that are small may be 
excluded from processing operations, such as filtering, 
without much loss in processing accuracy. In the literature, 
there exists another transformation based on four-valued 
complex Walsh functions, called the “complex BIFORE 
transform” [1], [2]. For real-valued input data, the complex 
BIFORE transform reduces to a BIFORE or Hadamard 
transform whose bases are Walsh functions. The common 
definition of the complex BIFORE transform is based on a 
recursive formula defining one class of complex Hadamard 
matrices that involves diagonalization of higher order matrices 
and multiple Kronecker products. The unified complex 
Hadamard transforms (UCHT’s) have recently been 
considered as a tool in spectral approach to logic design [3], 
[4]. Like its predecessors, the UCHT’s show similar 
properties and characteristics [5]. The idea of using complex-
valued rather than integer-valued transformation matrices for 
spectral processing of Boolean functions by using Perkowski 

linearly independent logic is considered for the first time in 
article [6]. By increasing still further the number of possible 
different entries in the transformation matrices with complex 
numbers, one can expect the reduction of their spectral 
representation, especially if both the original functions and 
their spectra are presented in the form of some kind of 
decision diagrams 

In particular, the Walsh–Hadamard transform is one of 
many UCHT matrices introduced here. Some of the UCHT 
matrices have a unique half-spectrum property (HSP). There 
are general fast algorithms from the representation of 
transform matrices in the form of layered Kronecker matrices. 
In addition, constant-geometry fast algorithms with in-place 
architecture are also available for the new transforms. The 
complex BIFORE transform instead has only fast transform 
without constant geometry algorithm. The existence of 
constant-geometry fast butterflies is suitable for efficient very 
large-scale integration (VLSI) implementation. The 
introduced UCHT’s may be used for various applications, 
where the Walsh-Hadamard transform has already been used 
[7], [8], [9], [10], [11]. Generally, the UCHT’s may be 
classified as the integer-valued and complex integer valued 
transforms. The integer-valued and complex integer-valued 
matrices have elements confined to two (±1) and four 
complex numbers (±1 and ±j), respectively. Comparing the 
complex integer valued UCHT’s between themselves, those 
that possess HSP will be advantageous as they require half of 
the spectral coefficients for analysis. However, it should be 
pointed out that if the functional data are real numbers, the 
existence of the HSP in complex integer valued UCHT’s has 
no additional storage advantage compared to the integer-
valued counterparts (e.g., Walsh-Hadamard transform) [4]. 
But, the complex integer-valued transforms are suitable for 
problems with complex-valued functions and for such 
functions, the CHT’s with half spectrum property is the most 
compact representation. Some UCHT’s are simply systems of 
complex Walsh functions while others become q-valued 
Chrestenson functions for q = 2 or 4 [12], [13]. It is then 
obvious that the UCHT’s can be used in different applications 
of complex Walsh functions and Chrestenson functions in 
processing of multiple-valued functions, especially for the 
case of four-valued functions. 

From the Complex Hadamard Transform (CHT), several 
complex decisions diagrams are derived and analysis of more 
general CHT properties for 1D and 2D signals are investigated 
[10], [11]. 

In this paper, the concept of a family of CHT’s is 
introduced and such a family is proposed to represent discrete 
signals and systems. Several properties of this family are 
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outlined. The generation of the transformation matrices 
commences from the basic Walsh-Hadamard transformation 
matrix. All members of UCHT’s may be produced by the 
defined direct matrix operator and recursively generated to 
higher dimension matrices by a single Kronecker product. It 
must be noted that although the basis functions in the 
definition that generates all UCHT matrices are discrete 
Walsh functions, each member of the newly defined UCHT 
fulfills requirements of complex Hadamard matrices; there are 
altogether 64 such different matrices that are introduced in 
this section, all of which are generated by one unifying 
formula. 

II. MATHEMATICAL DESCRIPTION 

In the definitions of existing discrete orthogonal transforms, 
the elements of transformation matrices normally consist of 
discrete values of +1 and -1; or generalizations that permit 
values of q/nje π2  for a prime q, 1−=j  ; which leads to a 
complete orthonormal system known as the Chrestenson 
system [12], [133].  

The transformation matrices are defined by a set of basis 
discrete valued functions. To ensure that no information is lost 
in the resulting spectrum, orthogonality in the transformation 
matrix is essential. This requires zero correlation between 
pairs of different basis functions. In general, [H] is an 
orthogonal NxN matrix with real entries, when: 

   [H]T = [H]-1  .           (1) 

Then, the following relation is fulfilled: 

[H].[H]T = [H]T.[H] = N.[I]  ,          (2) 

where [I] is the identity matrix. 
In the complex domain [H] is orthogonal if: 

[H].[H]* =[H]*.[H] =N.[I] ,          (3) 

where [H]* is the represents the complex conjugate 
transpose of [H], [ ] N/NHdet 21=  and [H] is said to be a 
CHT. The resulting matrix [H] can be easily used as a binary, 
ternary, or quaternary transform as any two, three, or all four 
elements in the transformation matrix can be used for coding 
of two-, three-, or four-valued logic functions respectively. In 
addition, with an appropriate coding of the original function, 
the UCHT may be used as a multiple-valued transform. 

All UCHT matrices of size 2x2 can be separated into two 
groups of 32 basic matrices dependent on the existence of the 
HSP [4]. These transformation matrices are listed in Table 1.  

The transformation core matrix for any UCHT is defined 
as: 
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where [W]1 is the Walsh–Hadamard transform matrix of order 2 
and matrix operator   is defined as: 
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Here [A] is an r x c matrix, such as [ ] { })l,k(aA = , where 

rk ≤≤0 , cl ≤≤0 . a(k,l) is the current element of matrix [A] at 
row k and column l; [B]={b(l)} is 1 x c row matrix and 
[C]={c(k)} is an r x 1 column matrix. 
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In Eqs. (6) the matrices [B1]={b1(l)} and [B2]={b2(l)} are 1 
x c row matrices and n⊗  denotes right-hand side Kronecker 
product applied n times. 

The basis complex Hadamard matrices of order 2n (n>2) 
can be received as the Kronecker product of a number of 
identical “core” matrices of order 2n-1 in the following way: 

 [ ]
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Using the basic forward one-dimensional complex 
Hadamard transform for n=2 from the input signal vector 
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, the output spectral vector - 
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From the above equations the following mathematical 
properties can be established: 

 [ ] N
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The common results, obtained from the one dimensional 
Complex Hadamard Transform can be generalized for two-
dimensional Complex Hadamard Transform. In this case the 
2D signals (images) can be represented by the input matrix 
[X] with the size NxN. The result is a spatial spectrum matrix 
[Y] with the same size. The corresponding equations for the 
forward and the inverse 2D CHT are: 

  
[ ] [ ]

[ ] [ ] ][][1
][][

2 NN

NN

CHYCH
N

X

CHXCHY

=

=
            (13) 

The symmetry of CHT coefficients allows 2D CHT to be 
accomplished in two steps. The first one is 1D CHT for every 
row the image and the second one is 1D CHT for the columns. 
This difference of transformation makes easier the 
calculations and the symmetry guarantees that the correlations 
between image elements in horizontal and vertical direction 
will influence in the same way the determination of 
transformed elements. The same considerations can be made 
for two steps calculation of the inverse 2D CHT. 

III. Experimental Results 

For the analyses of spectral distribution between the 
coefficients of 2D CHT, constructed with the different base 

matrices of order 2, a test image “LENNA”, shown in Fig.1, 
with size 512x512 and 256 gray levels is used. This image is 
transformed by the 2D CHT with kernel 16x16. By this way 
the input image is divided on 1024 sub-images with size 
16x16 and is calculated by MATLAB 6.5 program. In Fig.2a 
and Fig. 2b the averaged amplitude frequency spectrums of all 
sub-blocks for two-dimensional Complex Hadamard 
Transform and two dimensional real Hadamard Transform 
respectively, are shown. On Fig. 2c the averaged phase 
frequency spectrum calculated for all sub-blocks, for two-
dimensional Complex Hadamard Transform, is shown. 

 

 
Fig.1. Test image “LENNA” (512x512 pixels and 256 gray levels). 

   
   a) 2D CHT amplitude spectrum;   b) 2D HT amplitude spectrum; 

 
c) 2D CHT phase spectrum; 

Fig. 2. Averaged amplitude and phase spectrums of image 
“LENNA” 

IV. CONCLUSION 

A class of Complex Hadamard matrices is presented. 
The CHT is based on the mapping of 4-valued integers into 

the unit circle of the complex plane with elements strictly in 
the set {1;-1; j;-j}. Under the various permutations of the 
integers, there exist some conditions which will lead to the 
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transform being mapped to and being orthogonal in the 
complex domain. This has been identified as the family of 
UCHT’s, as the mapping of the multiple-valued transforms 
into the complex domain will result in square basis matrices 
which satisfy the Hadamard’s determinant equation in the 
complex domain. Intuitively, Walsh–Hadamard being an 
integer-valued transform is merely a special case of the 
UCHT’s. 

Another advantage of the presented transform is the 
existence of not only fast algorithms based on layered 
Kronecker products that can be represented by a series of 
strand matrices (which is similar to the complex BIFORE 
transform), but also a constant geometry fast algorithm that is 
well suited to VLSI hardware implementation. In such 
architecture, only one butterfly stage has to be implemented 
and the processed data can be fed back to the input to be 
processed by the same circuitry. 

The general principles of complex matrices construction of 
high order for 1D and 2D transforms are given. The basic 
properties of CHT are discussed. The obtained amplitude 
spectrums for CHT and HT are practically identical and show 
that both can be used in similar applications. 

The presented Complex Hadamard Transform can be used 
in digital signal processing for spectral analysis, pattern 
recognition, digital watermarking, coding and transmission of 
one-dimensional and two-dimensional signals. 

Signal parameters in many DSP applications are estimated 
using the Fourier power spectrum. However, computing the 
Fourier transform is relatively complicated and there are 
applications for which it is important to achieve hardware 
savings, even at the expense of some loss in parameter 
estimation accuracy, as is the case in satellite radar altimetry. 
The Walsh–Hadamard transform is used for such an 
application. Also, it is well known from the literature that the 
fast Walsh–Hadamard transform can be efficiently used for 
the calculation of the DFT for implementing adaptive filters 
and for DFT spectrum filter realizations. The usual frequency-
domain FIR filtering problem can be easily converted into a 
Walsh frequencydomain filtering problem, and similar 
structure results in a possible alternative for infinite-impulse 
response filter implementations. An efficient method for 
implementation of a class of isotropic quadratic filters using 
the Walsh–Hadamard transform was also proposed. 
Advantages of the 2-D Walsh–Hadamard transform, also 
known as S or sequential transform, in lossless image 
compression are well known. An integrated-circuit chip 
implementing 2-D Walsh–Hadamard transform has been 
implemented for commercial applications by Philips 
Corporation. As the Walsh–Hadamard transform is one of the 
UCHT’s, it is thus believed that the important properties of 
the UCHT’s presented in this article may also be of interest to 
researchers working in the above-mentioned areas where the 
standard Walsh–Hadamard matrices had been applied. 
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