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Abstract – In many practical applications in signal processing, 
digital system design, logic design, pattern recognition, and 
related areas, it is often essentially important to be able to 
efficiently compute spectral transforms for logic functions. The 
corresponding Fast Fourier transform (FFT)-like algorithms for 
computation of various spectral transforms can be efficiently 
adapted to parallel computation platforms. In this paper, we 
investigate parallel implementation of two classes of FFT-like 
algorithms, the Cooley-Tukey algorithms, and the constant 
geometry algorithms, for computing the Reed-Muller, the Walsh, 
and the arithmetic transforms on multicore Central Processing 
Units (CPUs) using the Message Passing Interface (MPI) 
framework. The paper also discusses certain specific parallel 
implementation styles of programming FFT-like algorithms on 
multi-core CPU platforms. Performance of the MPI 
implementations is compared with the classical C++ 
implementations for the single-core CPUs. It is shown that 
parallel MPI programming provides significant speedups for one 
of the considered implementation styles of the Cooley-Tukey 
algorithms. Other MPI implementations have a negative impact 
on the performance of both Cooley-Tukey and constant 
geometry algorithms. 
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I. INTRODUCTION 

Spectral transforms have many applications in signal 
encoding and processing techniques, synthesis, verification, 
and testing of logic circuits [1], [2], and many other areas [9], 
[10]. Due to rapidly increasing complexity of logic circuits 
and systems, in recent years, there has been a renewed study 
in spectral transforms for logic functions. For practical 
applications, it is often necessary to be able to efficiently 
compute these transforms. There is a variety of algorithms for 
efficient calculation of these transforms: FFT-like algorithms 
using truth vector representations of functions [3], fast tabular 
techniques, calculation algorithms through reduced 
representations of logic functions, and binary decision 
diagrams [2], [9]. The FFT-like computation has been one of 

the most popular numerical methods applied in almost every 
field of science. The FFT-like computation can be executed 
much faster by using parallel processing [4], especially 
nowadays, as many supercomputing facilities are available to 
scientists and engineers across the world. Furthermore, the 
multicore desktop computers offer an inexpensive capability 
of parallel processing. Parallel computing on multicore CPUs 
enables parallel processing on commodity hardware. Only 
very recently the possibility of using multicore CPUs to solve 
complex problems in logic design has been explored by many 
researchers, for example in [5], [6].  

Moreover, inspired by efficient execution of parallel 
problems in logic design and possibility of using multi-core 
CPUs platform, in this paper we investigate two classes of 
parallel FFT-like algorithms for computing spectral 
transforms of logic functions using the MPI framework. 
Particularly, in the case of the Cooley-Tukey algorithms, we 
investigate three implementation styles for the efficient 
parallel computation of the Reed-Muller, the Walsh, and the 
arithmetic transforms of logic functions using a multi-core 
CPU computation platform. Fast Reed-Muller, Walsh, and 
arithmetic transforms have the same time complexity of 
O(Nlog2N), where N = 2n is the size of the truth vector, and n 
is the number of variables in the function. These spectral 
transforms have different transform matrices that are 
Kronecker product representable.  

The paper also investigates mappings of two distinct FFT-
like algorithms, the Cooley-Tukey class and the constant 
geometry class algorithms, to the multi-core CPU computing 
model. There are many approaches for implementation of 
parallel Cooley-Tukey class FFT-like algorithms and they can 
be categorized into three styles for parallelizing butterflies of 
FFT: block data mapping, cycling data mapping, and all 
butterflies parallel mapping [7].  

Performances of the MPI implementations of two classes 
and three programming styles of FFT-like algorithms for the 
efficient parallel computation of Reed-Muller, Walsh, and the 
arithmetic transform of logic functions are compared with the 
classical C++ implementations on the single-core CPU. The 
idea behind the selection of these transforms is to compare the 
performance of their implementations since they have FFT 
butterflies of different computational complexity.  

The paper is organized as follows. Section 2 shortly 
introduces the fast spectral transforms for logic functions and 
illustrates by examples FFT-like algorithms for efficient 
parallel computation of the Reed-Muller, the Walsh, and the 
arithmetic transforms. In section 3, parallelization of FFT-like 
algorithms for these transforms is discussed. Section 4 
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presents experimental testing of mappings of these FFT-like 
algorithms with various data mapping styles to the multi-core 
CPU computing model using MPI framework. Section 5 
offers some concluding remarks and directions for future 
work. 

II.  FAST SPECTRAL TRANSFORMS                              

OF LOGIC FUNCTIONS  

Spectral transforms of logic functions are an efficient tool 
in solving many tasks in logic design [2]. Spectral transforms 
defined by the Kronecker product representable transforms 
matrices have found many practical applications. The most 
common reason for this is existence of efficient calculation 
algorithms for these transforms.  

In this paper, we discuss three different kinds of spectral 
transform of logic functions: the Reed-Muller, Walsh, and the 
arithmetic transforms. These transforms have different 
transform matrices that are Kronecker product representable.   

The Reed-Muller transform [2] represents an important 
operator for obtaining AND-EXOR expressions of logic 
functions. The Reed-Muller transform matrix of order n, 
denoted by )(nR , is defined recursively as:  
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The arithmetic transform [2], which is also known as the 
integer Reed-Muller transform, was initially introduced to 
represent multiple-output functions by a single polynomial for 
the equivalent integer functions. The arithmetic transform 
matrix of order n, denoted by )(nA , has a recursive structure 

analogous to that of the Reed-Muller transform and is defined 
as: 
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The Walsh transform [6] is based on a set of orthogonal 
functions defined by J. L. Walsh which are an extension of a 
set of functions defined by H. Rademacher. Analogously to 
previous transforms, the Walsh transform matrix of order n in 
Hadamard ordering, denoted by )(nW , is defined as:  
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The spectrum of a logic function f given by truth vector 

[ ]TnfffF )12()1(),0( ,, −=
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is computed as:  

FnTSf )(= ,   (4) 

where T(n) is any of the three matrices R(n), W(n), and A(n), 
with computations performed in GF(2) for the Reed-Muller 
transform, and in the set of rational numbers for the Walsh 
and the arithmetic transforms.  

The FFT developed in signal processing for computing the 
Discrete Fourier transform (DFT) can be used to compute the 

coefficients in spectra of logic functions by varying just the 
basic kernels of the algorithms and ranges were the 
computations are performed [1], [2], [9]. The Reed-Muller, 
the arithmetic, and the Walsh transform matrices, expressed in 
(1), (2) and (3) respectively, can be factorized in different 
ways yielding different fast transform algorithms, the so-
called FFT-like algorithms [8]. In this paper, we consider the 
Cooley-Tukey and the constant geometry algorithms for the 
Fast Reed-Muller transform (FRT), the Fast Arithmetic 
Transform (FAT) and the Fast Walsh Transform (FWT) 
algorithms. The selection was made in order to compare the 
performance of different parallel implementations on the 
multi-core CPU computation platform using MPI framework. 

First, we consider the Cooley-Tukey (CT) algorithms, 
based on the Good-Thomas factorization which originates 
from the Kronecker product structure of the transform matrix 
[2]. Figure 1 shows the elementary butterflies operations 

(flow-graphs) for the Reed-Muller, the arithmetic and the 
Walsh basic transform matrices, respectively. In this figure, 
the solid and the dotted lines carry positive (+1) and negative 
(-1) weight, respectively. Note that, the operations for Walsh 
and arithmetic elementary butterfly are over integers, while 
the Reed-Muller butterfly uses GF(2) operations. 

Figure 2 shows the flow graphs of the FFT-like Cooley-
Tukey algorithm for the computation of the Reed-Muller 
spectrum of a three-variable function f given by the truth 

vector [ ]TfffF )7()1(),0( ,,K= .  

The constant geometry (CG) FFT-like algorithms are 
based on a factorization of the transform matrix into identical 
factor matrices [2]. Therefore, the indices of the butterfly 
operations are fixed for each step producing lower arithmetic 
complexity of algorithm. Because the results of butterfly 

 

Fig. 1. The elementary butterfly operations for basic Reed-Muller, 
the arithmetic and Walsh transform matrices. 

 

Fig. 2. The flow graphs of the FFT-like Cooley-Tukey algorithm for 
computing the Reed-Muller spectrum of a tree-variable function. 
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operations cannot be written in the same memory locations 
where the function is stored, implementations of this class of 
algorithms results in increased memory requirements 
compared to the Cooley-Tukey algorithms.  

Figure 3 show the flow graphs of the FFT-like constant 
geometry algorithm for computing the Walsh spectrum of a 
three-variable function f.  

III.  PARALLELIZATION OF THE FFT-LIKE 

ALGORITHMS OF SPECTRAL TRANSFORMS 

The FFT-like algorithms have a large degree of parallelism 
in each step of the flow graph and according to this, their 
implementation on parallel computers has been well studied. 
A fundamental step in parallelizing the FFT-like algorithms 
on multicore CPUs is the mapping of array addresses to cores. 

There are many approaches for implementation of parallel 
Cooley-Tukey class FFT-like algorithms on multi-processing 
elements and they can be categorized into three styles for 
parallelizing butterflies of FFT: block data mapping, cycling 
data mapping, and all butterflies in parallel mapping [7]. 
Figure 4 shows the flow graphs of the FFT-like algorithm of 
Cooley-Tukey class with various data mapping styles for the 
computation of Reed-Muller spectrum of a three-variable 
function  f  executed on two processing elements. 

Block data mapping (BDM) style for parallelizing 
butterflies of Cooley-Tukey class of FFT-like algorithms 
(Figure 4a) uses an approach where the scope for parallelism 
increases with steps of the flow graph. In the first step, all the 
data is intertwined and all butterflies are performed on one 
processing element. In the second step, butterflies visibly 
break into two separate processing elements, and in the last 
stage there are two points of parallelization. 

Cycling data mapping (CDM) style for parallelizing 
butterflies of Cooley-Tukey class of FFT-like algorithms 
(Figure 4b) uses an approach where the scope for parallelism 
decreases with steps of the flow graph. In the first step, all the 
butterflies are distributed individually to processing elements. 
In the second step, butterflies visibly break into two separate 
points of parallelization and, in the last step, there are four 
points of parallelization. 

All butterflies in parallel mapping (BPM) style for 
parallelizing butterflies of Cooley-Tukey algorithms (Figure 
4c) uses an approach where all butterfly computations can be 
performed in parallel. While this mapping style provides 
maximum scope of parallelism, there is a significant 
additional computation of memory addresses for each step 
producing higher overall arithmetic complexity of the 
algorithm. 

Usually there is only one implementation style for parallel 
constant geometry class FFT-like algorithms, since the control 
flow is the same in each step.  

 

 

 

Fig. 3. The flow graphs of the FFT-like constant geometry algorithm 
for computing the Walsh spectrum of a three-variable function. 

 

Fig. 4. The flow graphs of the parallel FFT-like algorithm of CT 
class for computation of the FRT of the tree-variable function 

executed on two processing elements: (a) BDM, (b) CDM, (c) BPM. 
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IV.  EXPERIMENTAL RESULTS  

For multi-core CPU architectures, the model of parallel 
processing is based on a large number of processor cores with 
the ability to directly address into a shared RAM memory. 
The MPI framework has become a widely used standard, 
though not necessarily the best framework for parallel 
programming. For comparison purposes, we developed 
referent C++ and MPI implementations of FFT-like 
algorithms using two classes of algorithms and three 
implementation styles of the fast Reed-Muller, the fast Walsh, 
and the fast arithmetic transforms. The computations are 
performed on an Intel desktop PC working at 3.66 GHz with 
12 GBs of RAM. The quad-core CPU that is used is an Intel 
i7 with hyper-threading, yielding 8 logical cores (threads). 

We compared the performance of a multi-core CPU 
accelerated MPI implementations to a single-core CPU C++ 
implementations for a sample set of random logic functions. 
Since the computations are performed over vectors, 
processing times are independent of function values and, 
therefore, are performed using randomly-generated function 
truth vectors. 

Table 1 shows computation performance of FFT-like 
algorithms using various classes and implementation styles 
discussed in the previous section. All times in the table are 
given in seconds. The data in the table are horizontally sorted 
in the increasing order of the number of functions variables. 

TABLE I 
COMPUTATION TIMES OF THE REED-MULLER, THE WALSH, AND THE 

ARITHMETIC TRANSFORM USING VARIOUS CLASSES OF FFT-LIKE 

ALGORITHMS AND IMPLEMENTATION STYLES ON SINGLE-CORE CPU 

AND MULTI -CORE CPU PLATFORM  

FFT-like algorithm   Computation time [s] 

T
ran

sfo
rm

 

A
lg

o
rith

m
 

S
tyle 

C
P

U
 co

res 

Number of variables n 

25 26 27 28 29 

FRT CT  1 0.6 1.3 2.0 3.9 10 
FRT CG  1 0.9 1.8 4.0 6.5 13 
FRT CT BPM 8 0.6 1.2 1.9 3.8 - 
FRT CT BDM 8 0.1 0.3 0.4 0.7 - 
FRT CT CDM 8 0.9 2.0 4.3 8.6 - 
FRT CG  8 0.6 1.4 3.0 - - 
FWT CT  1 0.8 1.4 3.2 6.5 9.3 
FWT CG  1 1.2 2.2 4.5 6.9 19 
FWT CT BPM 8 0.8 1.3 2.0 4.0 - 
FWT CT BDM 8 0.2 0.3 0.6 1.2 - 
FWT CT CDM 8 1.2 2.4 4.8 9.7 - 
FWT CG  8 0.7 1.4 2.9 - - 
FAT CT  1 0.5 1.0 1.7 3.8 7.2 
FAT CG  1 1.0 1.9 3.8 7.9 16 
FAT CT BPM 8 0.6 1.1 1.9 3.8 - 
FAT CT BDM 8 0.1 0.2 0.4 0.7 - 
FAT CT CDM 8 1.1 2.1 4.1 8.5 - 
FAT CG  8 0.6 1.3 2.9 - - 

From the data in Table 1, it can be seen that, on this multi-
core CPU platform, for all considered transforms, the BMD 
style for the Cooley-Tukey algorithms significantly reduces 
computation times when compared to single-core CPU 
implementation. In the case of CDM style for the Cooley-
Tukey algorithms, computation times are increased for about 
50 to 60%. Computation times of butterflies in BPM style are 
very close to the computation times in single-core CPU 
implementations. Table entries with dashes indicate that the 
implementation failed to complete for that particular 
benchmark because of running out of memory. 

The constant geometry FFT-like algorithms are not suitable 
for an MPI parallel processing configuration, because they 
increase inter-shared memory communication delay. 

V. CONCLUSION 

Computing power can be substantially increased through 
the exploitation of the inherent parallelism available in FFT-
like calculations. However, an experimental performance 
analysis of the parallel FRT, FWT, and FAT algorithms has 
not been sufficiently investigated in a multi-core CPU 
environment. In this paper, we experimentally evaluated 
various implementations of fast algorithms for three different 
spectral transforms for logic functions. We analyzed the 
speedup obtained, by taking into account both the class of 
algorithms and the implementation styles. 

It has been shown that the parallel MPI programming 
provides significant speedups only for block data mapping 
style of the Cooley-Tukey algorithms. Other implementation 
styles, for both Cooley-Tukey algorithms and constant 
geometry algorithms, have a negative impact on the 
performance of parallel program execution. 
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