L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

Parallel Computation of Fast Spectral Transforms of
Logic Functions using the MPI Framework
Milo§ Radmanow', Radomir S. Stanko#i, Dusan B. Gaj

Abstract —In many practical applicationsin signal processing,
digital system design, logic design, pattern recognition, and
related areas, it is often essentially important to be able to
efficiently compute spectral transforms for logic functions. The
corresponding Fast Fourier transform (FFT)-like algorithms for
computation of various spectral transforms can be efficiently
adapted to paralle computation platforms. In this paper, we
investigate parallel implementation of two classes of FFT-like
algorithms, the Cooley-Tukey algorithms, and the constant
geometry algorithms, for computing the Reed-Muller, the Walsh,
and the arithmetic transforms on multicore Central Processing
Units (CPUs) using the Message Passing Interface (MPI)
framework. The paper also discusses certain specific parallel
implementation styles of programming FFT-like algorithms on
multi-core CPU platforms. Performance of the MPI
implementations is compared with the classical C++
implementations for the single-core CPUs. It is shown that
parallel MPI programming provides significant speedups for one
of the considered implementation styles of the Cooley-Tukey
algorithms. Other MPI implementations have a negative impact
on the performance of both Cooley-Tukey and constant
geometry algorithms.

Keywords —Logic functions, spectral transforms, FFT-like
algorithms, multicore CPU, MPI.

. INTRODUCTION

the most popular numerical methods applied in almost every
field of science. The FFT-like computation can be executed
much faster by using parallel processing [4], especially
nowadays, as many supercomputing facilities are available to
scientists and engineers across the world. Furthermore, the
multicore desktop computers offer an inexpensive capability
of parallel processing. Parallel computing on multicore CPUs
enables parallel processing on commodity hardware. Only
very recently the possibility of using multicore CPUs to solve
complex problems in logic design has been explored by many
researchers, for example in [5], [6].

Moreover, inspired by efficient execution of parallel
problems in logic design and possibility of using multi-core
CPUs platform, in this paper we investigate two classes of
parallel FFT-like algorithms for computing spectral
transforms of logic functions using the MPI framework.
Particularly, in the case of the Cooley-Tukey algorithms, we
investigate three implementation styles for the efficient
parallel computation of the Reed-Muller, the Walsh, and the
arithmetic transforms of logic functions using a multi-core
CPU computation platform. Fast Reed-Muller, Walsh, and
arithmetic transforms have the same time complexity of
O(Nlog;N), whereN = 2" is the size of the truth vector, and
is the number of variables in the function. These spectral
transforms have different transform matrices that are
Kronecker product representable.

Spectral transforms have many applications in signal The paper also investigates mappings of two distinct FFT-

encoding and processing techniques, synthesis, verificatidie algorithms, the Cooley-Tukey class and the constant
and testing of logic circuits [1], [2], and many other areas [9§eometry class algorithms, to the multi-core CPU computing
[10]. Due to rapidly increasing complexity of logic circuitsmodel. There are many approaches for implementation of
and systems, in recent years, there has been a renewed spadgllel Cooley-Tukey class FFT-like algorithms and they can
in spectral transforms for logic functions. For practicabe categorized into three styles for parallelizing butterflies of
applications, it is often necessary to be able to efficientlyFT: block data mapping, cycling data mapping, and all
compute these transforms. There is a variety of algorithms fautterflies parallel mapping [7].

efficient calculation of these transforms: FFT-like algorithms Performances of the MPI implementations of two classes
using truth vector representations of functions [3], fast tabuland three programming styles of FFT-like algorithms for the
techniques, calculation algorithms through reducegfficient parallel computation of Reed-Muller, Walsh, and the
representations of logic functions, and binary decisioarithmetic transform of logic functions are compared with the
diagrams [2], [9]. The FFT-like computation has been one éfassical C++ implementations on the single-core CPU. The
idea behind the selection of these transforms is to compare the
performance of their implementations since they have FFT
butterflies of different computational complexity.

The paper is organized as follows. Section 2 shortly
introduces the fast spectral transforms for logic functions and
illustrates by examples FFT-like algorithms for efficient
parallel computation of the Reed-Muller, the Walsh, and the
arithmetic transforms. In section 3, parallelization of FFT-like
algorithms for these transforms is discussed. Section 4

Milo§ Radmanond is with the Faculty of Electronic Engineering
Aleksandra Medvedeva 14, 18000 NiS, Serbia, mdik
milos.radmanovic@elfak.ni.ac.rs

2Radomir Stankoviis with the Faculty of Electronic Engineeri
Aleksandra Medvedeva 14, 18000 NiS, Serbia, mdik
radomir.stankovic@gmail.com

®Dusan Gajt is with the Faculty of Electronic Engineeri
Aleksandra Medvedeva 14, 18000 Ni$, Serbiadit: dusan.gajic(
elfak.ni.ac.rs

II L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

presents experimental testing of mappings of these FFT-likeefficients in spectra of logic functions by varying just the
algorithms with various data mapping styles to the multi-coteasic kernels of the algorithms and ranges were the
CPU computing model using MPI framework. Section Tomputations are performed [1], [2], [9]. The Reed-Muller,
offers some concluding remarks and directions for futufge arithmetic, and the Walsh transform matrices, expressed in

work. (1), (2) and (3) respectively, can be factorized in different
ways Yielding different fast transform algorithms, the so-

Il. FAST SPECTRAL TRANSFORMS called FFT-like algorithms [8]. In this paper, we consider the

OF LocIc FUNCTIONS Cooley-Tukey and the constant geometry algorithms for the

Fast Reed-Muller transform (FRT), the Fast Arithmetic
Spectral transforms of logic functions are an efficient tod! rangform (FAT) and_ the Fast Wa_Ish Transform (FWT)
in solving many tasks in logic design [2]. Spectral transfornfdgorithms. The selection was made in order to compare the
defined by the Kronecker product representable transfori§rformance of different parallel implementations on the
matrices have found many practical applications. The md®ulti-core CPU computation platform using MPI framework.

common reason for this is existence of efficient calculation First, we consider the Cooley-Tukey (CT) algorithms,
algorithms for these transforms. based on the Good-Thomas factorization which originates

In this paper, we discuss three different kinds of spectréibm the Kronecker product structure of the transform matrix
transform of logic functions: the Reed-Muller, Walsh, and thg2]. Figure 1 shows the elementary butterflies operations
arithmetic transforms. These transforms have differeglow-graphs) for the Reed-Mullerthe arithmetic and the
transform matrices that are Kronecker product repre_sentaquNa|3h basic transform matrices, respectively. In this fegur

The Reed-Muller transform [2] represents an importanfe solig and the dotted lines carry positive (+1) and negative
operator for obtaining AND-EXOR EXpressions of Iog|c(_1) weight, respectively. Note that, the operations for Walsh
functions. The _Reed_—MuIIer trar_15form matrix of order and arithmetic elementary butterfly are over integers, while
denoted bR(n) , is defined recursively as: the Reed-Muller butterfly use3F(2) operations.

n 10
|%n):igll R, R(l):|:l 1] (1) fiZXZfl flO\—Ofl flyzfﬁfz
A 10 fO—30fifi frOLo-D ity

The arithmetic transform [2], which is also known as the g.c4-Muller the arithmetic Walsh
integer Reed-Muller transform, was initially introduced to

represent multiple-output functions by a single polynomial for rig 1. The elementary butterfly operations for basic Reed-Muller,
the equivalent integer functions. The arithmetic transform the arithmetic and Walsh transform matrices.

matrix of ordern, denoted byA(n), has a recursive structure

analogous to that of the Reed-Muller transform and is deﬁneldu Figure 2 shows the flow graphs of the FFT-like Cooley-

key algorithm for the computation of the Reed-Muller

as:
spectrum of a three-variable functidngiven by the truth
n 10 vectorF =|f (0),f @) @] .
Am=L1AQ, A =[_1 J. @ fofo. 1o
The Walsh transform [6] is based on a set of orthogonal f0) 0 0 O S§im(0)
functions defined by J. L. Walsh which are an extension of a A Sim((1)
set of functions defined by H. Rademacher. Analogously to
previous transforms, the Walsh transform matrix of ordier f2) Sim(2)
Hadamard ordering, denoted\b{n) , is defined as: 13) Sin(3)
wim=Cwe.we=t ©) " o
n)= , = .
i=1 1 -1 f5) Sim(5)
The spectrum of a logic functioh given by truth vector fi§) o § 2 : O 5imi(6)
F=[f ©.f@ f@ -1 iscomputed as: 7) Sim7)
S =T(nF, (4) Fig. 2. The flow graphs of the FFT-like Cooley-Tukey algorithm for
where T(n) is any of the three matricén), W(n), andA(n), computing the Reed-Muller spectrum of a tree-variable function.

with computations performed iGF(2) for the Reed-Muller) The constant geometry (CG) FFT-ike algorithms are

transform, and in the set of rational numbers for the Wal A e . ;
%ased on a factorization of the transform matrix into identical

and the arithmetic transforms. ' -
The FFT developed in signal processing for computing tﬁgctor matrices [2]. Therefore, the indices of the butterfly
Berations are fixed for each step producing lower arithmetic

Discrete Fourier transform (DFT) can be used to compute tﬁomplexity of algorithm. Because the results of butterfly

II L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

operationscannot be written in the same memory locations All butterflies in parallel mapping (BPM) style for

where the function is stored, implementations of this class

parallelizing butterflies of Cooley-Tukey algorithms (Figure

algorithms results in increased memory requirementg) uses an approach where all butterfly computations can be

compared to the Cooley-Tukey algorithms.

performed in parallel. While this mapping style provides

Figure 3 show the flow graphs of the FFT-like constanhaximum scope of parallelism, there is a significant

geometry algorithm for computing the Walsh spectrum of
three-variable functioh

f0)
fi1) o
fi2) o

Siw(0)

Srw(1)

S(2)

&dditional computation of memory addresses for each step
producing higher overall arithmetic complexity of the
algorithm.

Usually there is only one implementation style for parallel
constant geometry class FFT-like algorithms, since the control
flow is the same in each step.

Su(3)

Spw(4)
Siw(5)
Sw(6)

f7) OF===->0b----0f----3 Spn(7)

Fig. 3. The flow graphs of the FFT-like constant geometry algorithm
for computing the Walsh spectrum of a three-variable function.

[1l. PARALLELIZATION OF THE FFT-LIKE
ALGORITHMS OFSPECTRAL TRANSFORMS

The FFT-like algorithms have a large degree of parallelism
in each step of the flow graph and according to this, their
implementation on parallel computers has been well studied.
A fundamental step in parallelizing the FFT-like algorithms
on multicore CPUs is the mapping of array addresses to cores.

There are many approaches for implementation of parallel
Cooley-Tukey class FFT-like algorithms on multi-processing
elements and they can be categorized into three styles for
parallelizing butterflies of FFT: block data mapping, cycling
data mapping, and all butterflies in parallel mapping [7].
Figure 4 shows the flow graphs of the FFT-like algorithm of
Cooley-Tukey class with various data mapping styles for the
computation of Reed-Muller spectrum of a three-variable
function f executed on two processing elements.

Block data mapping (BDM) style for parallelizing
butterflies of Cooley-Tukey class of FFT-like algorithms
(Figure 4a) uses an approach where the scope for parallelism
increases with steps of the flow graph. In the first step, all the
data is intertwined and all butterflies are performed on one
processing element. In the second step, butterflies visibly
break into two separate processing elements, and in the last
stage there are two points of parallelization.

Cycling data mapping (CDM) style for parallelizing
butterflies of Cooley-Tukey class of FFT-like algorithms
(Figure 4b) uses an approach where the scope for parallelism
decreases with steps of the flow graph. In the first step, all the

Srm(0)

(1)
Sim(2)
Sem(3)
Sm(4)
Str(S)
Strm(6)

Spm(7)

Srm(0)
Sim(1)
Sim(2)

Srm(3)

Sim(4)
Sin(5)
Srrm(6)

Sim(7)

i(4)
n(5)
(6)

\ N TS
~

A7) O-==--- O------ NO-----2 0 Sim(7)

(©)
executed on processing element 1
----executed on processing element 2

butterflies are distributed individually to processing elements. Fig. 4. The flow graphs of the parallel FFT-like algorithm of CT
In the second step, butterflies visibly break into two separate class for computation of the FRT of the tree-variable function
points of parallelization and, in the last step, there are fougxecuted on two processing elements: (a) BDM, (b) CDM, (c) BPM.

points of parallelization.

II L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

V. EXPERIMENTAL RESULTS From the data in Table 1, it can be seen that, on this multi-
core CPU platform, for all considered transforms, the BMD
For multi-core CPU architectures, the model of parallétyle for the Cooley-Tukey algorithms significantly reduces
processing is based on a large number of processor cores WRfPUtation times when compared to single-core CPU
the ability to directly address into a shared RAM memoryMplementation. In the case of CDM style for the Cooley-
The MPI framework has become a widely used standarbiukey algorithms, computation times are increased for about
though not necessarily the best framework for parall&0 to 60%. Computation times of butterflies in BPM style are
programming. For comparison purposes, we develop¥8"Y close to the computation times in single-core CPU
referent C++ and MPI implementations of FET-likdmplementations. Table entries with dashes indicate that the
algorithms using two classes of algorithms and thrdgWlementation failed to complete for that particular
implementation styles of the fast Reed-Muller, the fast WalsR@nchmark because of running out of memory. _
and the fast arithmetic transforms. The computations areThe constant geometry FFT-like algorithms are not suitable
performed on an Intel desktop PC working at 3.66 GHz wi@r an MPI parallel processing configuration, because they
12 GBs of RAM. The quad-core CPU that is used is an Intéicrease inter-shared memory communication delay.
i7 with hyper-threading, yielding 8 logical cores (threads).
We compared_ the performance of a multi-core CPU V. CONCLUSION
accelerated MPI implementations to a single-core CPU C++

irr_lplementations for a_sample set of random logic funCtions'Computing power can be substantially increased through
Since the computations are performed over vectorge eypioitation of the inherent parallelism available in FFT-
processing times are independent of function values afgle caicylations. However, an experimental performance
therefore, are performed using randomly-generated func“%alysis of the parallel FRT, FWT, and FAT algorithms has
tru_}_hg/lectcirs.h . ‘ ¢ FET I_knot been sufficiently investigated in a multi-core CPU
| a.r? shows qomputlatlon perdO(ma|r1ce oF FF1-IK8nvironment. In this paper, we experimentally evaluated
algorithms using various classes and implementation Styl\‘?érious implementations of fast algorithms for three different

in the increasing order of the number of functions variables. algorithms and the implementation styles.

It has been shown that the parallel MPI programming
provides significant speedups only for block data mapping
ARITHMETIC TRANSFORM USING VARIOUS CLASSES OFFT-LIKE style of the Cooley-Tukey algorithms. cher implementation
ALGORITHMS AND IMPLEMENTATION STYLES ON sINGLECoReCPU Styles, for both Cooley-Tukey algorithms and constant
AND MULTI-CORECPUPLATFORM geometry algorithms, have a negative impact on the
performance of parallel program execution.

TABLE |
COMPUTATION TIMES OF THEREED-MULLER, THE WALSH, AND THE

FFT-like algorithm Computation time [s]

- > Number of variables REFERENCES

S 18| &

% % % 25 26 27 28 29 [1] M. A. Thornton, R. Drechsler, and D. M. MilleGpectral

3 3 Techniques in VLSI CABpringer, 2001.

[2] M. G. Karpovsky, R. S. Stankaviand J. T. AstolaSpectral
FRT | CT 06| 13 20 39 1p Logic and Its Applications for the Design of Digital Devices
FRT | CG 09| 1.8 40 6.5 1B Wiley, 2008.
FRT | CT| BPM 06! 121 19 38 4 [3] S.L.Hurst, D. M. Miller, and J. C. Muzi@pectral Techniques
E i in Digital Logic, Bristol, Academic Press, 1985.

FRT | CT | BDM 01| 0.3 04 0. [4] M. Frigo, S. G. Johnson, “The Design and Implementation of
FRT | CT | CDM 09| 20 43 86 - FFTW3", Proc. of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.
FRT | CG 0.6] 1.4 3. - -l [5] C. Brunelli R. Airoldi, and J. Nurmi, “Implementation and
FWT | CT 08| 14 3.2 6.5 9.8 Benchmarking of FFT Algorithms on Multicore Platforms”,
FEWT | cG 1.2 22/ 454 69 1B Proc.Int. Symposium on System on Chip, pp. 59-62, 2010.
EWT | CT | BPM 08l 13 2d ad i [6] Y. Zhou, J. Zhang, and D. Fan, “Software and Hardware

Cooperate for 1-D FFT Algorithm Optimization on Multicore

00|00 |00 (0o || |oo|o0|00|0o |- ||| ||| | |S8109 NdD

FWT | CT | BDM 02| 03] 0.6/ 172 - Processors”, Proc. Int. Conf. on Computer and Inf. Technology,
FWT | CT | CDM 1.2 2.4, 4.8 9.7 - vol. 1, pp. 86-91, 2009.
FWT | CG 0.7| 14 29 - - [7] E. C. Chu, A. Georgdnside the FFT Black Box: Serial and
FAT CT 0.5 1.0 1.7 3.9 7b Parallel Fast Fourier Transform Algorithm&€RC Press, 2000.

L [8] J. Astola, R. S. StankaviFundamentals of Switching Theory
FAT | CG 10} 1.9 38 79 16 and Logic Design: A Hands on Approad§SA, Springer, 2006.
FAT | CT | BPM 06/ 11 19 3.4 - [9] K. R. Rao, D. N. Kim, and J. J. Hwarfgst Fourier Transform
FAT | CT | BDM 0.1| 0.2| 0.4 0.7 - — Algorithms and ApplicationSpringer, 2010.
FAT | CT | CDM 1.1 211 4.1 8.5 - [10] A. Deb, S. GhoshPower Electronic Systems — Walsh Analysis
FAT CG 0.6 1.3 29 _ _ with MATLAB CRC Press, 2014.

