
Parallel Computation of Fast Spectral Transforms of
Logic Functions using the MPI Framework

Miloš Radmanović1, Radomir S. Stanković2, Dušan B. Gajić3

Abstract – In many practical applications in signal processing,
digital system design, logic design, pattern recognition, and
related areas, it is often essentially important to be able to
efficiently compute spectral transforms for logic functions. The
corresponding Fast Fourier transform (FFT)-like algorithms for
computation of various spectral transforms can be efficiently
adapted to parallel computation platforms. In this paper, we
investigate parallel implementation of two classes of FFT-like
algorithms, the Cooley-Tukey algorithms, and the constant
geometry algorithms, for computing the Reed-Muller, the Walsh,
and the arithmetic transforms on multicore Central Processing
Units (CPUs) using the Message Passing Interface (MPI)
framework. The paper also discusses certain specific parallel
implementation styles of programming FFT-like algorithms on
multi-core CPU platforms. Performance of the MPI
implementations is compared with the classical C++
implementations for the single-core CPUs. It is shown that
parallel MPI programming provides significant speedups for one
of the considered implementation styles of the Cooley-Tukey
algorithms. Other MPI implementations have a negative impact
on the performance of both Cooley-Tukey and constant
geometry algorithms.

Keywords – Logic functions, spectral transforms, FFT-like

algorithms, multicore CPU, MPI.

I. INTRODUCTION

Spectral transforms have many applications in signal
encoding and processing techniques, synthesis, verification,
and testing of logic circuits [1], [2], and many other areas [9],
[10]. Due to rapidly increasing complexity of logic circuits
and systems, in recent years, there has been a renewed study
in spectral transforms for logic functions. For practical
applications, it is often necessary to be able to efficiently
compute these transforms. There is a variety of algorithms for
efficient calculation of these transforms: FFT-like algorithms
using truth vector representations of functions [3], fast tabular
techniques, calculation algorithms through reduced
representations of logic functions, and binary decision
diagrams [2], [9]. The FFT-like computation has been one of

the most popular numerical methods applied in almost every
field of science. The FFT-like computation can be executed
much faster by using parallel processing [4], especially
nowadays, as many supercomputing facilities are available to
scientists and engineers across the world. Furthermore, the
multicore desktop computers offer an inexpensive capability
of parallel processing. Parallel computing on multicore CPUs
enables parallel processing on commodity hardware. Only
very recently the possibility of using multicore CPUs to solve
complex problems in logic design has been explored by many
researchers, for example in [5], [6].

Moreover, inspired by efficient execution of parallel
problems in logic design and possibility of using multi-core
CPUs platform, in this paper we investigate two classes of
parallel FFT-like algorithms for computing spectral
transforms of logic functions using the MPI framework.
Particularly, in the case of the Cooley-Tukey algorithms, we
investigate three implementation styles for the efficient
parallel computation of the Reed-Muller, the Walsh, and the
arithmetic transforms of logic functions using a multi-core
CPU computation platform. Fast Reed-Muller, Walsh, and
arithmetic transforms have the same time complexity of
O(Nlog2N), where N = 2n is the size of the truth vector, and n
is the number of variables in the function. These spectral
transforms have different transform matrices that are
Kronecker product representable.

The paper also investigates mappings of two distinct FFT-
like algorithms, the Cooley-Tukey class and the constant
geometry class algorithms, to the multi-core CPU computing
model. There are many approaches for implementation of
parallel Cooley-Tukey class FFT-like algorithms and they can
be categorized into three styles for parallelizing butterflies of
FFT: block data mapping, cycling data mapping, and all
butterflies parallel mapping [7].

Performances of the MPI implementations of two classes
and three programming styles of FFT-like algorithms for the
efficient parallel computation of Reed-Muller, Walsh, and the
arithmetic transform of logic functions are compared with the
classical C++ implementations on the single-core CPU. The
idea behind the selection of these transforms is to compare the
performance of their implementations since they have FFT
butterflies of different computational complexity.

The paper is organized as follows. Section 2 shortly
introduces the fast spectral transforms for logic functions and
illustrates by examples FFT-like algorithms for efficient
parallel computation of the Reed-Muller, the Walsh, and the
arithmetic transforms. In section 3, parallelization of FFT-like
algorithms for these transforms is discussed. Section 4

1Miloš Radmanović is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
milos.radmanovic@elfak.ni.ac.rs

2Radomir Stanković is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
radomir.stankovic@gmail.com

3Dušan Gajić is with the Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail: dusan.gajic@
elfak.ni.ac.rs

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

105

presents experimental testing of mappings of these FFT-like
algorithms with various data mapping styles to the multi-core
CPU computing model using MPI framework. Section 5
offers some concluding remarks and directions for future
work.

II. FAST SPECTRAL TRANSFORMS

OF LOGIC FUNCTIONS

Spectral transforms of logic functions are an efficient tool
in solving many tasks in logic design [2]. Spectral transforms
defined by the Kronecker product representable transforms
matrices have found many practical applications. The most
common reason for this is existence of efficient calculation
algorithms for these transforms.

In this paper, we discuss three different kinds of spectral
transform of logic functions: the Reed-Muller, Walsh, and the
arithmetic transforms. These transforms have different
transform matrices that are Kronecker product representable.

The Reed-Muller transform [2] represents an important
operator for obtaining AND-EXOR expressions of logic
functions. The Reed-Muller transform matrix of order n,
denoted by)(nR , is defined recursively as:









=⊗=

= 11

01
)1(),1()(

1
RRnR

n

i
. (1)

The arithmetic transform [2], which is also known as the
integer Reed-Muller transform, was initially introduced to
represent multiple-output functions by a single polynomial for
the equivalent integer functions. The arithmetic transform
matrix of order n, denoted by)(nA , has a recursive structure

analogous to that of the Reed-Muller transform and is defined
as:










−
=⊗=

= 11

01
)1(),1()(

1
AAnA

n

i
. (2)

The Walsh transform [6] is based on a set of orthogonal
functions defined by J. L. Walsh which are an extension of a
set of functions defined by H. Rademacher. Analogously to
previous transforms, the Walsh transform matrix of order n in
Hadamard ordering, denoted by)(nW , is defined as:










−
=⊗=

= 11

11
)1(),1()(

1
WWnW

n

i
. (3)

The spectrum of a logic function f given by truth vector

[]TnfffF)12()1(),0(,, −=
K

is computed as:

FnTSf)(= , (4)

where T(n) is any of the three matrices R(n), W(n), and A(n),
with computations performed in GF(2) for the Reed-Muller
transform, and in the set of rational numbers for the Walsh
and the arithmetic transforms.

The FFT developed in signal processing for computing the
Discrete Fourier transform (DFT) can be used to compute the

coefficients in spectra of logic functions by varying just the
basic kernels of the algorithms and ranges were the
computations are performed [1], [2], [9]. The Reed-Muller,
the arithmetic, and the Walsh transform matrices, expressed in
(1), (2) and (3) respectively, can be factorized in different
ways yielding different fast transform algorithms, the so-
called FFT-like algorithms [8]. In this paper, we consider the
Cooley-Tukey and the constant geometry algorithms for the
Fast Reed-Muller transform (FRT), the Fast Arithmetic
Transform (FAT) and the Fast Walsh Transform (FWT)
algorithms. The selection was made in order to compare the
performance of different parallel implementations on the
multi-core CPU computation platform using MPI framework.

First, we consider the Cooley-Tukey (CT) algorithms,
based on the Good-Thomas factorization which originates
from the Kronecker product structure of the transform matrix
[2]. Figure 1 shows the elementary butterflies operations

(flow-graphs) for the Reed-Muller, the arithmetic and the
Walsh basic transform matrices, respectively. In this figure,
the solid and the dotted lines carry positive (+1) and negative
(-1) weight, respectively. Note that, the operations for Walsh
and arithmetic elementary butterfly are over integers, while
the Reed-Muller butterfly uses GF(2) operations.

Figure 2 shows the flow graphs of the FFT-like Cooley-
Tukey algorithm for the computation of the Reed-Muller
spectrum of a three-variable function f given by the truth

vector []TfffF)7()1(),0(,,K= .

The constant geometry (CG) FFT-like algorithms are
based on a factorization of the transform matrix into identical
factor matrices [2]. Therefore, the indices of the butterfly
operations are fixed for each step producing lower arithmetic
complexity of algorithm. Because the results of butterfly

Fig. 1. The elementary butterfly operations for basic Reed-Muller,
the arithmetic and Walsh transform matrices.

Fig. 2. The flow graphs of the FFT-like Cooley-Tukey algorithm for
computing the Reed-Muller spectrum of a tree-variable function.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

106

operations cannot be written in the same memory locations
where the function is stored, implementations of this class of
algorithms results in increased memory requirements
compared to the Cooley-Tukey algorithms.

Figure 3 show the flow graphs of the FFT-like constant
geometry algorithm for computing the Walsh spectrum of a
three-variable function f.

III. PARALLELIZATION OF THE FFT-LIKE

ALGORITHMS OF SPECTRAL TRANSFORMS

The FFT-like algorithms have a large degree of parallelism
in each step of the flow graph and according to this, their
implementation on parallel computers has been well studied.
A fundamental step in parallelizing the FFT-like algorithms
on multicore CPUs is the mapping of array addresses to cores.

There are many approaches for implementation of parallel
Cooley-Tukey class FFT-like algorithms on multi-processing
elements and they can be categorized into three styles for
parallelizing butterflies of FFT: block data mapping, cycling
data mapping, and all butterflies in parallel mapping [7].
Figure 4 shows the flow graphs of the FFT-like algorithm of
Cooley-Tukey class with various data mapping styles for the
computation of Reed-Muller spectrum of a three-variable
function f executed on two processing elements.

Block data mapping (BDM) style for parallelizing
butterflies of Cooley-Tukey class of FFT-like algorithms
(Figure 4a) uses an approach where the scope for parallelism
increases with steps of the flow graph. In the first step, all the
data is intertwined and all butterflies are performed on one
processing element. In the second step, butterflies visibly
break into two separate processing elements, and in the last
stage there are two points of parallelization.

Cycling data mapping (CDM) style for parallelizing
butterflies of Cooley-Tukey class of FFT-like algorithms
(Figure 4b) uses an approach where the scope for parallelism
decreases with steps of the flow graph. In the first step, all the
butterflies are distributed individually to processing elements.
In the second step, butterflies visibly break into two separate
points of parallelization and, in the last step, there are four
points of parallelization.

All butterflies in parallel mapping (BPM) style for
parallelizing butterflies of Cooley-Tukey algorithms (Figure
4c) uses an approach where all butterfly computations can be
performed in parallel. While this mapping style provides
maximum scope of parallelism, there is a significant
additional computation of memory addresses for each step
producing higher overall arithmetic complexity of the
algorithm.

Usually there is only one implementation style for parallel
constant geometry class FFT-like algorithms, since the control
flow is the same in each step.

Fig. 3. The flow graphs of the FFT-like constant geometry algorithm
for computing the Walsh spectrum of a three-variable function.

Fig. 4. The flow graphs of the parallel FFT-like algorithm of CT
class for computation of the FRT of the tree-variable function

executed on two processing elements: (a) BDM, (b) CDM, (c) BPM.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

107

IV. EXPERIMENTAL RESULTS

For multi-core CPU architectures, the model of parallel
processing is based on a large number of processor cores with
the ability to directly address into a shared RAM memory.
The MPI framework has become a widely used standard,
though not necessarily the best framework for parallel
programming. For comparison purposes, we developed
referent C++ and MPI implementations of FFT-like
algorithms using two classes of algorithms and three
implementation styles of the fast Reed-Muller, the fast Walsh,
and the fast arithmetic transforms. The computations are
performed on an Intel desktop PC working at 3.66 GHz with
12 GBs of RAM. The quad-core CPU that is used is an Intel
i7 with hyper-threading, yielding 8 logical cores (threads).

We compared the performance of a multi-core CPU
accelerated MPI implementations to a single-core CPU C++
implementations for a sample set of random logic functions.
Since the computations are performed over vectors,
processing times are independent of function values and,
therefore, are performed using randomly-generated function
truth vectors.

Table 1 shows computation performance of FFT-like
algorithms using various classes and implementation styles
discussed in the previous section. All times in the table are
given in seconds. The data in the table are horizontally sorted
in the increasing order of the number of functions variables.

TABLE I
COMPUTATION TIMES OF THE REED-MULLER, THE WALSH, AND THE

ARITHMETIC TRANSFORM USING VARIOUS CLASSES OF FFT-LIKE

ALGORITHMS AND IMPLEMENTATION STYLES ON SINGLE-CORE CPU

AND MULTI -CORE CPU PLATFORM

FFT-like algorithm Computation time [s]

T
ran

sfo
rm

A
lg

o
rith

m

S
tyle

C
P

U
 co

res

Number of variables n

25 26 27 28 29

FRT CT 1 0.6 1.3 2.0 3.9 10
FRT CG 1 0.9 1.8 4.0 6.5 13
FRT CT BPM 8 0.6 1.2 1.9 3.8 -
FRT CT BDM 8 0.1 0.3 0.4 0.7 -
FRT CT CDM 8 0.9 2.0 4.3 8.6 -
FRT CG 8 0.6 1.4 3.0 - -
FWT CT 1 0.8 1.4 3.2 6.5 9.3
FWT CG 1 1.2 2.2 4.5 6.9 19
FWT CT BPM 8 0.8 1.3 2.0 4.0 -
FWT CT BDM 8 0.2 0.3 0.6 1.2 -
FWT CT CDM 8 1.2 2.4 4.8 9.7 -
FWT CG 8 0.7 1.4 2.9 - -
FAT CT 1 0.5 1.0 1.7 3.8 7.2
FAT CG 1 1.0 1.9 3.8 7.9 16
FAT CT BPM 8 0.6 1.1 1.9 3.8 -
FAT CT BDM 8 0.1 0.2 0.4 0.7 -
FAT CT CDM 8 1.1 2.1 4.1 8.5 -
FAT CG 8 0.6 1.3 2.9 - -

From the data in Table 1, it can be seen that, on this multi-
core CPU platform, for all considered transforms, the BMD
style for the Cooley-Tukey algorithms significantly reduces
computation times when compared to single-core CPU
implementation. In the case of CDM style for the Cooley-
Tukey algorithms, computation times are increased for about
50 to 60%. Computation times of butterflies in BPM style are
very close to the computation times in single-core CPU
implementations. Table entries with dashes indicate that the
implementation failed to complete for that particular
benchmark because of running out of memory.

The constant geometry FFT-like algorithms are not suitable
for an MPI parallel processing configuration, because they
increase inter-shared memory communication delay.

V. CONCLUSION

Computing power can be substantially increased through
the exploitation of the inherent parallelism available in FFT-
like calculations. However, an experimental performance
analysis of the parallel FRT, FWT, and FAT algorithms has
not been sufficiently investigated in a multi-core CPU
environment. In this paper, we experimentally evaluated
various implementations of fast algorithms for three different
spectral transforms for logic functions. We analyzed the
speedup obtained, by taking into account both the class of
algorithms and the implementation styles.

It has been shown that the parallel MPI programming
provides significant speedups only for block data mapping
style of the Cooley-Tukey algorithms. Other implementation
styles, for both Cooley-Tukey algorithms and constant
geometry algorithms, have a negative impact on the
performance of parallel program execution.

REFERENCES

[1] M. A. Thornton, R. Drechsler, and D. M. Miller, Spectral
Techniques in VLSI CAD, Springer, 2001.

[2] M. G. Karpovsky, R. S. Stanković, and J. T. Astola, Spectral
Logic and Its Applications for the Design of Digital Devices,
Wiley, 2008.

[3] S. L. Hurst, D. M. Miller, and J. C. Muzio, Spectral Techniques
in Digital Logic, Bristol, Academic Press, 1985.

[4] M. Frigo, S. G. Johnson, “The Design and Implementation of
FFTW3”, Proc. of the IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[5] C. Brunelli, R. Airoldi, and J. Nurmi, “Implementation and
Benchmarking of FFT Algorithms on Multicore Platforms”,
Proc.Int. Symposium on System on Chip, pp. 59-62, 2010.

[6] Y. Zhou, J. Zhang, and D. Fan, “Software and Hardware
Cooperate for 1-D FFT Algorithm Optimization on Multicore
Processors”, Proc. Int. Conf. on Computer and Inf. Technology,
vol. 1, pp. 86-91, 2009.

[7] E. C. Chu, A. George, Inside the FFT Black Box: Serial and
Parallel Fast Fourier Transform Algorithms, CRC Press, 2000.

[8] J. Astola, R. S. Stanković, Fundamentals of Switching Theory
and Logic Design: A Hands on Approach, USA, Springer, 2006.

[9] K. R. Rao, D. N. Kim, and J. J. Hwang, Fast Fourier Transform
– Algorithms and Applications, Springer, 2010.

[10] A. Deb, S. Ghosh, Power Electronic Systems – Walsh Analysis
with MATLAB, CRC Press, 2014.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

108

