
A Performance Comparison of
Computing LU Decomposition of Matrices

on the CPU and the GPU
Dušan B. Gajić1, Radomir S. Stanković1, Miloš Radmanović1

Abstract – This paper presents a comparison of time efficiency
of different implementations of LU decomposition of matrices,
performed on either central processing units (CPUs) or graphics
processing units (GPUs). For processing on the CPU, we use the
Eigen C++ linear algebra template library, Intel Math Kernel
Library (MKL), and MATLAB (MATrix LABoratory). For
performing LU decomposition on the GPU, we employ
MATLAB’s Parallel Computing Toolbox and Nvidia CUDA
(Compute Unified Device Architecture) augmented with CULA
(CUDA Linear Algebra) programming library. Processing times
are compared using randomly-generated single-precision floating
point matrices of size up to 16384×16384. The experiments show
that the CUDA/CULA GPU implementation offers best
performance for matrices of size up to 8192×8192. This
implementation is on average 2.03 times faster than for the
second-best performing implementation (MATLAB’s Parallel
Computing Toolbox on the GPU) and 11.82 times faster than the
worst-performing implementation (Eigen on the CPU). For
problem instances which cannot be stored in the global GPU
memory (matrices larger than 8192×8192 on the used GPU), the
LU decomposition is performed only on the multicore CPU,
where Intel MKL proved to be 1.38 times faster than MATLAB
and 2.72 times faster than Eigen.

Keywords – Performance comparison, LU decomposition,

parallel computing, general purpose computations on graphics
processing units, GPGPU.

I. INTRODUCTION

The LU decomposition or LU factorization decomposes a
square matrix into a product of a lower triangular unit matrix
(unit matrix has all entries on the main diagonal equal to 1)
and an upper triangular matrix [7, 15]. This method,
introduced by Turing in 1948 [18], is widely used for
problems such as solving systems of linear equations,
inverting matrices, and computing matrix determinants, which
are critical parts of many problems in science and engineering
[7, 15, 16]. Therefore, efficient computation of LU
decomposition is of considerable importance in scientific
computing to the degree that this task is one of the standard
benchmarks used to measure the performance of top
supercomputers in the world [2].

Currently, two main computing platforms are available for

performing numerical algorithms, such as LU decomposition
that is discussed in this paper. These are the central processing
unit (CPU) and the graphics processing unit (GPU). Current
CPUs are still based on the single instruction, single data
(SISD) von Neumann architecture, although they are now
multicore [8]. GPUs have a single instruction, multiple data
(SIMD) manycore architecture, which became programmable
for non-graphics general-purpose algorithms only in the last
ten years [1, 10]. Distinctions in computing architectures lead
to different performance when implementing the same
algorithms. Further, specific characteristics of architectures
motivated development of various programming frameworks
tailored to take advantage of some of these characteristics.
Therefore, it is compelling to perform a comparison of
different implementations of LU decomposition computed on
CPUs and GPUs.

This paper presents a performance comparison of
computing the LU decomposition using three different
programming frameworks for the CPU and two for the GPU.
The aim of the paper is to identify the computing platform and
programming framework which produces the fastest LU
decomposition of single-precision real matrices.

The paper is organized as follows. First, we briefly review
the method of LU decomposition in Section 2. Section 3
provides basic information about the Eigen, Intel MKL, and
MATLAB programming environments for the CPU, and
MATLAB’s Parallel Computing Toolbox and CUDA/CULA
programming frameworks for the GPU. Section 4 offers some
implementations details. The experimental settings and results
are presented in Section 5. Section 6 summarizes the results of
the research reported in this paper.

II. LU DECOMPOSITION

LU decomposition is a method for factorizing a square
matrix A into a product of two matrices - a lower triangular
unit matrix L and an upper triangular matrix U. The method
of LU decomposition can be extended to non-square matrices
by adding the requirement that U must be a row echelon
matrix [15]. In the general case, partial row reordering
(pivoting) of A before decomposition is performed when
necessary to ensure existence and numerical stability of LU
factorization [7, 16].

Using the LU decomposition, a square matrix A of size N ×
N is factorized as

1Dušan B. Gajić, Radomir S. Stanković, and Miloš Radmanović
are with the University of Niš, Faculty of Electronic Engineering,
Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mails:
dusan.b.gajic@gmail.com, radomir.stankovic@gmail.com,
milos.radmanovic@elfak.ni.ac.rs.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

109

11 12 1

21 22 2

1 2

N

N

N N NN

a a a

a a a

a a a

 
 
 = =
 
 
 

A

L

L

M M O M

L

11 12 1

21 22 2

1 2

1 0 0

1 0 0
.

1 0 0

N

N

N N NN

u u u

l u u

l l u

   
   
   = =
   
   
   

LU

L L

L L

M M O M M M O M

L L

 (1)

Example 1. A given (3×3) matrix A

2 1 3

4 1 3

2 5 10

 
 = − 
 − 

A

can be factorized by using the LU decomposition as

1 0 0 2 1 3

2 1 0 0 3 3 .

1 3 1 0 0 4

   
   = = − −   
   − −   

A LU

The LU decomposition is chosen for the research reported
in this paper because of its generality. If we take the problem
of solving a system of linear equations as an example, the LU
decomposition can be directly applied for solving any square
system of linear algebraic equations of the form

,=Ax b (2)

where A is a given N × N matrix with the coefficients of the
system, b is a given vector with the N constant terms, and x is
a vector with the unknown solutions to be computed. After
applying the LU decomposition, the system becomes

.=LUx b (3)

The lower triangular system Ly = b is then solved by forward
substitution. Subsequently, the upper triangular system Ux = y
is solved by back-substitution to obtain the solution x of the
original system [15].

III. PROGRAMMING ENVIRONMENTS

In this research, the LU decomposition is computed using
Eigen, Intel MKL, and MATLAB on the multicore CPU. On
the GPU, we employ MATLAB Parallel Computing Toolbox
and CUDA extended with the CULA programming library.

A. Eigen

Eigen is an open source C++ library for linear algebra
which includes functions for vector and matrix operations,
numerical solvers, and other related algorithms [4]. It offers
clean and expressive interface and supports explicit
vectorization for programs using instruction set extensions
such as Intel’s Streaming SIMD Extensions (SSE) [4].
However, it lacks an in-built support for multithreaded

processing on multicore CPUs. Only some of the Eigen’s
functions can exploit parallelism using Open Multi-Processing
(OpenMP) [5, 14].

B. Intel Math Kernel Libraries

Intel MKL is a library of mathematical functions for Intel
and compatible CPUs [9]. It includes Basic Linear Algebra
Subprograms (BLAS) and Linear Algebra PACKage
(LAPACK) routines, fast Fourier transform (FFT) algorithms,
and vectorized math functions. Functions implemented in
Intel MKL are optimized for Intel multicore processors and
allow automatic multithreaded execution on available CPU
cores [9]. Intel MKL has compilers for C, C++, and Fortran,
and it is available for Windows, Linux, and Mac OS X.

C. MATLAB

MATLAB is an interactive numerical computing
environment and a programming language developed by
MathWorks [11]. It allows numerical computations, data
analysis and visualization, as well as algorithm
implementation using a high-level programming language
[11]. It also contains a large set of toolboxes for performing
computations in mathematics, signal and image processing,
computational finance, parallel computing, etc. Therefore, it is
widely used by both engineers and scientists.

D. MATLAB Parallel Computing Toolbox

MATLAB’s Parallel Computing Toolbox allows the use of
multicore CPUs, GPUs, and clusters, for parallel processing of
computationally intensive algorithms [17]. This toolbox
includes special high-level data types, parallel loops, and
numerical algorithms, which permit concurrent execution of
programs, through translation and execution of code using
Message Passing Interface on the CPU [Pacheco] and CUDA
on the GPU [17].

For more details on parallel computing on CPUs, as well as
MPI and OpenMP programming frameworks, used by Eigen,
Intel MKL, and MATLAB for parallel processing, we refer to
[8, 14].

E. CUDA/CULA

CUDA is a parallel programming architecture, framework,
and language, developed by Nvidia, for the purposes of
implementing and processing general-purpose algorithms on
graphics processing units (GPGPU or GPU computing). It
supports a massively-parallel programming model constructed
around the high-throughput, high-latency GPU architecture.

CULA is a GPU-accelerated library for linear algebra, built
on top of the Nvidia CUDA programming framework [3]. It is
developed by EM Photonics as two separate tools for dense
and sparse linear algebra – CULAdense and CULAsparse [3].

For more details on GPU computing, which attracted a fast-
growing interest of researchers in recent years, as well as the
CUDA programming framework, we refer to [1, 10, 12, 13].

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

110

IV. IMPLEMENTATION DETAILS

For the implementation of LU decomposition, we used the
following approach.

We generated square matrices with random single-precision
floating numbers using the rand function available in
MATLAB and MATLAB’s Parallel Computing Toolbox. For
the same purposes in the Eigen, Intel MKL, and
CUDA/CULA implementations, we used the rand function
from cstdlib, with pseudo-random generator number seed set
using srand(time(NULL)) function.

For computing the LU decomposition on the CPU, we used
the partialPivLu function in Eigen, and the [L, U, P] = lu(A)
command in MATLAB. In Intel MKL, we called the
LAPACKE_dgesv routine, with matrix A set to be in the row
major format. For performing the LU decomposition using
MATLAB’s Parallel Computing Toolbox on the GPU, we
stored the matrix A in the gpuArray data structure [17]. In
CUDA/CULA, we first transferred A to the GPU using pinned
memory, in order to effectively use the PCIe bus between the
CPU and the GPU [6, 10], and then called the
culaDeviceSgetrf function from the CULA library.

V. EXPERIMENTS

A. Experimental Settings

The experiments were carried out using the computing
platform and software presented in Table I. The LU
decomposition was performed on matrices of size N × N, for
N = 1024, 2048, 4096, 8192, 16384. The elements of the
matrices were single-precision floating point numbers, each
represented by 4 bytes in the memory. The presented
computational times represent average values for 10 program
executions for each size of the input matrix.

TABLE I
THE EXPERIMENTAL PLATFORM AND SOFTWARE VERSIONS

CPU
core frequency

number of cores

Intel Core i7-920
2.66 GHz
4

Memory 12 GB DDR3-2000 MHz

Operating
System

Windows 7 Ultimate 64-bit

GPU
core frequency

memory
number of cores
compute version

Nvidia GTX 650 Ti
900 MHz
1 GB GDDR5 4.2 GHz
384
2.1

Library/Software version

 Eigen
MATLAB
Intel MKL

CUDA
CULA

3.2.4
2015a
11.2 (in Intel Parallel Studio 2015XE)
6.5
CULAdense R18

B. Experimental Results

Results of the experiments preformed as described in the
previous subsection are shown in Table 2. Dashed lines in the
table indicate that the computation could not be performed for
the corresponding matrix size. Figure 1 shows the same
information graphically.

TABLE II
PROCESSING TIMES FOR DIFFERENT IMPLEMENTATIONS OF

LU DECOMPOSITION ON THE CPU AND THE GPU

 Processing time [ms]

N
CPU GPU

Eigen MATLAB Intel
MKL

MATLAB
GPU

CUDA/
CULA

1024 73 36 24 21 17
2048 485 254 204 98 55
4096 3409 1779 922 739 240
8192 24561 12843 5965 - 1230

16384 189188 96813 46374 - -

When computing on the multicore CPU, the Intel MKL is
the fastest implementation. This is due to the automatic
multithreaded processing of MKL’s numerical routines, if a
multicore processor is present in the system, and its
optimization for execution on Intel processors. The Intel MKL
implementation was on average 1.38× and 2.72× faster than
MATLAB and Eigen, respectively. The Eigen implementation
is the slowest among the considered implementations because
it lacks multithreading capability [5]. Therefore, the LU
decomposition using Eigen was performed only on a single
core of a quad-core CPU available in our test platform. Note
that, for the largest considered matrices (N = 16384), we were
able to perform the LU decomposition only on the CPU, due
to the GPU memory limitations [6, 10].

Fig. 1. Processing times for different implementations of
LU decomposition on the CPU and the GPU.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

111

The CUDA/CULA GPU implementation is the fastest
among all considered CPU and GPU implementations, with
the exception of the largest considered matrices, which could
not be computed on the GPU, due to the lack of memory. This
is a major limitation for computing on the GPU, since it offers
shortest processing times, but only for matrices which can be
stored in its global memory. This restraint is even stronger
when using the MATLAB Parallel Computing Toolbox GPU
implementation, which could not handle matrices of size N =
8192, as a consequence of additional memory requirements
for storing high-level MATLAB matrix representation
(gpuArray).

The CUDA/CULA implementation is, for the considered
matrix sizes, on average 2.03× faster than the second-best
implementation – the MATLAB Parallel Computing Toolbox
on the GPU. The difference in speed between these two
implementations increases with the size of matrix – from
1.23× for N = 1024 to 3.07× for N = 8192.

We can see that a significant difference in speed exists
between the two GPU implementations, even though they
both, on the low-level, use CUDA. This can be attributed to
the additional time needed to translate high-level MATLAB
code to CUDA, as well as to inefficiencies in implementation
due to the automatic generation of CUDA code. On the other
hand, the CUDA/CULA implementation uses CUDA
functions and data structures directly and allows full control
of the corresponding code. We can conclude here that the
price to pay for faster program execution is extended
CUDA/CULA program development time in comparison to
using MATLAB’s Parallel Computing Toolbox.

Further, when we compare the CUDA/CULA
implementation with the considered CPU implementations,
we can observe that it is, on average, 11.82×, 6.15×, and
4.34× faster than the Eigen, MATLAB, and Intel MKL,
respectively.

VI. CONCLUSIONS

In this paper, we presented a comparison of time efficiency
of computing the LU decomposition using three different
implementations for CPUs and two for GPUs. The
experiments performed on matrices with randomly-generated
single-precision floating-point numbers showed that the
CUDA/CULA GPU implementation offers shortest
computation times, but only for matrices which can be stored
in the GPU global memory (N ≤ 8192 on our test platform).
The LU decomposition on larger matrices could be performed
only on the available multicore CPU, where Intel’s MKL is
the fastest implementation due to multithreaded execution
optimized for Intel processors.

We can conclude that, when processing time is a critical
parameter, the LU decomposition should be performed on the
GPU using highly-optimized linear algebra libraries like
CULA, whenever matrices can be stored in the GPU’s
memory. In other cases, Intel’s MKL is the best out of the
considered solutions for performing the LU decomposition on
multicore CPUs.

ACKNOWLEDGEMENTS

The research reported in this paper is partly supported by
the Ministry of Education and Science of the Republic of
Serbia, projects ON174026 (2011-2015) and III44006 (2011-
2015).

REFERENCES

[1] A. R. Brodtkorb, M. L. Sætra, T. R. Hagen, “Graphics
processing unit (GPU) programming strategies and trends in
GPU computing”, J. of Parallel and Distributed Computing, vol.
73, no. 1, pp. 4-13, 2013.

[2] J. Dongarra, M. Faverge, H. Ltaief, P. Luszczek, “Achieving
numerical accuracy and high performance using recursive tile
LU factorization”, Concurrency and Computation: Practice and
Experience, vol. 26, no. 7, pp. 1408–1431, 2014.

[3] EM Photonics, CULA Programming Guide, available from:
http://www.culatools.com/cula_dense_programmers_guide/
[accessed 16 March 2015], version 18, April, 2014.

[4] Eigen C++ Template Library for Linear Algebra, available
from: http://eigen.tuxfamily.org/index.php?title=Main_Page
[accessed March 16, 2015], version 3.2.4, January 2015.

[5] Eigen and Multithreading, available at:
http://eigen.tuxfamily.org/dox/TopicMultiThreading.html
[accessed March 20, 2015].

[6] D. B. Gajić, R. S. Stanković, "Computing the Vilenkin-
Chrestenson transform on a GPU", in J. of Multiple-Valued
Logic and Soft Computing, Old City Publishing, Philadelphia,
USA, vol. 25, no. 1-4, pp. 317-340, 2015.

[7] G. Golub, C. Van Loan, Matrix Computations, 3rd edition, The
Johns Hopkins University Press, 1996.

[8] J. L. Hennessy, D. A. Patterson, Computer Architecture: A
Quantitative Approach, 5th edition, Morgan Kaufmann, 2011.

[9] Intel Corporation, Intel Math Kernel Library Reference Manual,
available from: https://software.intel.com/sites/default/files/
managed/9d/ c8/mklman.pdf [accessed March 20, 2015].

[10] D. Kirk, W. M. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann, 2010.

[11] MathWorks, MATLAB, available from:
http://www.mathworks.com/products/matlab [accessed March,
16, 2015], version 8.5 (R2015A), March, 2015.

[12] Nvidia, Nvidia CUDA Programming Guide, available from:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guid
e.pdf [accessed March, 16, 2015], version 6.5, August, 2014.

[13] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, J.
Phillips, “GPU computing”, Proc. of the IEEE, vol. 96, no. 5,
pp. 279–299, 2008.

[14] P. Pacheco, An Introduction to Parallel Programming, Elsevier,
2011.

[15] D. Poole, Linear Algebra - A Modern Introduction, 2nd edition,
Brooks/Cole, Thomson, 2006.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing, 3rd edition,
Cambridge University Press, 2007.

[17] J. W. Suh, Y. Kim, Accelerating MATLAB with GPU
Computing – A Primer with Examples, Morgan Kaufmann –
Elsevier, 2014.

[18] A. M. Turing, “Rounding-off errors in matrix processes”, The
Quarterly J. Mechanics and Applied Mathematics, vol. 1, part 3,
pp. 287–308, September, 1948.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

112

