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Abstract – This paper presents a comparison of time efficiency 
of different implementations of LU decomposition of matrices, 
performed on either central processing units (CPUs) or graphics 
processing units (GPUs). For processing on the CPU, we use the 
Eigen C++ linear algebra template library, Intel Math Kernel 
Library (MKL), and MATLAB (MATrix LABoratory). For 
performing LU decomposition on the GPU, we employ 
MATLAB’s Parallel Computing Toolbox and Nvidia CUDA 
(Compute Unified Device Architecture) augmented with CULA 
(CUDA Linear Algebra) programming library. Processing times 
are compared using randomly-generated single-precision floating 
point matrices of size up to 16384×16384. The experiments show 
that the CUDA/CULA GPU implementation offers best 
performance for matrices of size up to 8192×8192. This 
implementation is on average 2.03 times faster than for the 
second-best performing implementation (MATLAB’s Parallel 
Computing Toolbox on the GPU) and 11.82 times faster than the 
worst-performing implementation (Eigen on the CPU). For 
problem instances  which cannot be stored in the global GPU 
memory (matrices larger than 8192×8192 on the used GPU), the 
LU decomposition is performed only on the multicore CPU, 
where Intel MKL proved to be 1.38 times faster than MATLAB 
and 2.72 times faster than Eigen.  
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parallel computing, general purpose computations on graphics 
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I. INTRODUCTION 

The LU decomposition or LU factorization decomposes a 
square matrix into a product of a lower triangular unit matrix 
(unit matrix has all entries on the main diagonal equal to 1) 
and an upper triangular matrix [7, 15]. This method, 
introduced by Turing in 1948 [18], is widely used for 
problems such as solving systems of linear equations, 
inverting matrices, and computing matrix determinants, which 
are critical parts of many problems in science and engineering 
[7, 15, 16]. Therefore, efficient computation of LU 
decomposition is of considerable importance in scientific 
computing to the degree that this task is one of the standard 
benchmarks used to measure the performance of top 
supercomputers in the world [2].  

Currently, two main computing platforms are available for 

performing numerical algorithms, such as LU decomposition 
that is discussed in this paper. These are the central processing 
unit (CPU) and the graphics processing unit (GPU). Current 
CPUs are still based on the single instruction, single data 
(SISD) von Neumann architecture, although they are now 
multicore [8]. GPUs have a single instruction, multiple data 
(SIMD) manycore architecture, which became programmable 
for non-graphics general-purpose algorithms only in the last 
ten years [1, 10]. Distinctions in computing architectures lead 
to different performance when implementing the same 
algorithms. Further, specific characteristics of architectures 
motivated development of various programming frameworks 
tailored to take advantage of some of these characteristics. 
Therefore, it is compelling to perform a comparison of 
different implementations of LU decomposition computed on 
CPUs and GPUs.      

This paper presents a performance comparison of 
computing the LU decomposition using three different 
programming frameworks for the CPU and two for the GPU. 
The aim of the paper is to identify the computing platform and 
programming framework which produces the fastest LU 
decomposition of single-precision real matrices.    

The paper is organized as follows. First, we briefly review 
the method of LU decomposition in Section 2. Section 3 
provides basic information about the Eigen, Intel MKL, and 
MATLAB programming environments for the CPU, and 
MATLAB’s Parallel Computing Toolbox and CUDA/CULA 
programming frameworks for the GPU. Section 4 offers some 
implementations details. The experimental settings and results 
are presented in Section 5. Section 6 summarizes the results of 
the research reported in this paper.    

II.  LU DECOMPOSITION 

LU decomposition is a method for factorizing a square 
matrix A into a product of two matrices - a lower triangular 
unit matrix L  and an upper triangular matrix U. The method 
of LU decomposition can be extended to non-square matrices 
by adding the requirement that U must be a row echelon 
matrix [15]. In the general case, partial row reordering 
(pivoting) of A before decomposition is performed when 
necessary to ensure existence and numerical stability of LU 
factorization [7, 16].   

Using the LU decomposition, a square matrix A of size N × 
N is factorized as 
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The LU decomposition is chosen for the research reported 
in this paper because of its generality. If we take the problem 
of solving a system of linear equations as an example, the LU 
decomposition can be directly applied for solving any square 
system of linear algebraic equations of the form 

,=Ax b              (2) 

where A is a given N × N matrix with the coefficients of the 
system, b is a given vector with the N constant terms, and x is 
a vector with the unknown solutions to be computed. After 
applying the LU decomposition, the system becomes  

.=LUx b                (3) 

The lower triangular system Ly  = b is then solved by forward 
substitution. Subsequently, the upper triangular system Ux = y 
is solved by back-substitution to obtain the solution x of the 
original system [15].   

III.  PROGRAMMING ENVIRONMENTS 

In this research, the LU decomposition is computed using 
Eigen, Intel MKL, and MATLAB on the multicore CPU. On 
the GPU, we employ MATLAB Parallel Computing Toolbox 
and CUDA extended with the CULA programming library.    

A. Eigen 

Eigen is an open source C++ library for linear algebra 
which includes functions for vector and matrix operations, 
numerical solvers, and other related algorithms [4]. It offers 
clean and expressive interface and supports explicit 
vectorization for programs using instruction set extensions 
such as Intel’s Streaming SIMD Extensions (SSE) [4]. 
However, it lacks an in-built support for multithreaded 

processing on multicore CPUs. Only some of the Eigen’s 
functions can exploit parallelism using Open Multi-Processing 
(OpenMP) [5, 14].    

B. Intel Math Kernel Libraries 

Intel MKL is a library of mathematical functions for Intel 
and compatible CPUs [9]. It includes Basic Linear Algebra 
Subprograms (BLAS) and Linear Algebra PACKage 
(LAPACK) routines, fast Fourier transform (FFT) algorithms, 
and vectorized math functions. Functions implemented in 
Intel MKL are optimized for Intel multicore processors and 
allow automatic multithreaded execution on available CPU 
cores [9]. Intel MKL has compilers for C, C++, and Fortran, 
and it is available for Windows, Linux, and Mac OS X.     

C. MATLAB 

MATLAB is an interactive numerical computing 
environment and a programming language developed by 
MathWorks [11]. It allows numerical computations, data 
analysis and visualization, as well as algorithm 
implementation using a high-level programming language 
[11]. It also contains a large set of toolboxes for performing 
computations in mathematics, signal and image processing, 
computational finance, parallel computing, etc. Therefore, it is 
widely used by both engineers and scientists.      

D. MATLAB Parallel Computing Toolbox 

MATLAB’s Parallel Computing Toolbox allows the use of 
multicore CPUs, GPUs, and clusters, for parallel processing of 
computationally intensive algorithms [17]. This toolbox 
includes special high-level data types, parallel loops, and 
numerical algorithms, which permit concurrent execution of 
programs, through translation and execution of code using 
Message Passing Interface on the CPU [Pacheco] and CUDA 
on the GPU [17].  

For more details on parallel computing on CPUs, as well as 
MPI and OpenMP programming frameworks, used by Eigen, 
Intel MKL, and MATLAB for parallel processing, we refer to 
[8, 14]. 

E. CUDA/CULA 

CUDA is a parallel programming architecture, framework, 
and language, developed by Nvidia, for the purposes of 
implementing and processing general-purpose algorithms on 
graphics processing units (GPGPU or GPU computing). It 
supports a massively-parallel programming model constructed 
around the high-throughput, high-latency GPU architecture.  

CULA is a GPU-accelerated library for linear algebra, built 
on top of the Nvidia CUDA programming framework [3]. It is 
developed by EM Photonics as two separate tools for dense 
and sparse linear algebra – CULAdense and CULAsparse [3].     

For more details on GPU computing, which attracted a fast-
growing interest of researchers in recent years, as well as the 
CUDA programming framework, we refer to [1, 10, 12, 13]. 
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IV.  IMPLEMENTATION DETAILS 

For the implementation of LU decomposition, we used the 
following approach. 

We generated square matrices with random single-precision 
floating numbers using the rand function available in 
MATLAB and MATLAB’s Parallel Computing Toolbox. For 
the same purposes in the Eigen, Intel MKL, and 
CUDA/CULA implementations, we used the rand function 
from cstdlib, with pseudo-random generator number seed set 
using srand(time(NULL)) function.  

For computing the LU decomposition on the CPU, we used 
the partialPivLu function in Eigen, and the [L, U, P] = lu(A) 
command in MATLAB. In Intel MKL, we called the 
LAPACKE_dgesv routine, with matrix A set to be in the row 
major format. For performing the LU decomposition using 
MATLAB’s Parallel Computing Toolbox on the GPU, we 
stored the matrix A in the gpuArray data structure [17]. In 
CUDA/CULA, we first transferred A to the GPU using pinned 
memory, in order to effectively use the PCIe bus between the 
CPU and the GPU [6, 10], and then called the 
culaDeviceSgetrf function from the CULA library.  

V. EXPERIMENTS 

A. Experimental Settings 

The experiments were carried out using the computing 
platform and software presented in Table I. The LU 
decomposition was performed on matrices of size N × N, for 
N = 1024, 2048, 4096, 8192, 16384. The elements of the 
matrices were single-precision floating point numbers, each 
represented by 4 bytes in the memory. The presented 
computational times represent average values for 10 program 
executions for each size of the input matrix. 

TABLE I 
THE EXPERIMENTAL PLATFORM AND SOFTWARE VERSIONS 

CPU 
core frequency 

number of cores 

Intel Core i7-920 
2.66 GHz 
4 

Memory 12 GB DDR3-2000 MHz 

Operating 
System 

Windows 7 Ultimate 64-bit 

GPU 
core frequency 

memory 
number of cores 
compute version 

Nvidia GTX 650 Ti 
900 MHz 
1 GB GDDR5 4.2 GHz 
384 
2.1 

Library/Software version 

                   Eigen 
MATLAB 
Intel MKL 

CUDA 
CULA 

3.2.4 
2015a 
11.2 (in Intel Parallel Studio 2015XE) 
6.5 
CULAdense R18 

 

B. Experimental Results 

Results of the experiments preformed as described in the 
previous subsection are shown in Table 2. Dashed lines in the 
table indicate that the computation could not be performed for 
the corresponding matrix size. Figure 1 shows the same 
information graphically.   

TABLE II 
PROCESSING TIMES FOR DIFFERENT IMPLEMENTATIONS OF                  

LU DECOMPOSITION ON THE CPU AND THE GPU 

 Processing time [ms] 
 

N 
CPU GPU 

Eigen MATLAB Intel 
MKL 

MATLAB 
GPU 

CUDA/
CULA 

1024 73 36 24 21 17 
2048 485 254 204 98 55 
4096 3409 1779 922 739 240 
8192 24561 12843 5965 - 1230 

16384 189188 96813 46374 - - 
 

When computing on the multicore CPU, the Intel MKL is 
the fastest implementation. This is due to the automatic 
multithreaded processing of MKL’s numerical routines, if a 
multicore processor is present in the system, and its 
optimization for execution on Intel processors. The Intel MKL 
implementation was on average 1.38× and 2.72× faster than 
MATLAB and Eigen, respectively. The Eigen implementation 
is the slowest among the considered implementations because 
it lacks multithreading capability [5]. Therefore, the LU 
decomposition using Eigen was performed only on a single 
core of a quad-core CPU available in our test platform. Note 
that, for the largest considered matrices (N = 16384), we were 
able to perform the LU decomposition only on the CPU, due 
to the GPU memory limitations [6, 10].   

 

 

Fig. 1. Processing times for different implementations of                
LU decomposition on the CPU and the GPU. 
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The CUDA/CULA GPU implementation is the fastest 
among all considered CPU and GPU implementations, with 
the exception of the largest considered matrices, which could 
not be computed on the GPU, due to the lack of memory. This 
is a major limitation for computing on the GPU, since it offers 
shortest processing times, but only for matrices which can be 
stored in its global memory. This restraint is even stronger 
when using the MATLAB Parallel Computing Toolbox GPU 
implementation, which could not handle matrices of size N = 
8192, as a consequence of additional memory requirements 
for storing high-level MATLAB matrix representation 
(gpuArray). 

The CUDA/CULA implementation is, for the considered 
matrix sizes, on average 2.03× faster than the second-best 
implementation – the MATLAB Parallel Computing Toolbox 
on the GPU. The difference in speed between these two 
implementations increases with the size of matrix – from 
1.23× for N = 1024 to 3.07× for N = 8192.  

We can see that a significant difference in speed exists 
between the two GPU implementations, even though they 
both, on the low-level, use CUDA. This can be attributed to 
the additional time needed to translate high-level MATLAB 
code to CUDA, as well as to inefficiencies in implementation 
due to the automatic generation of CUDA code. On the other 
hand, the CUDA/CULA implementation uses CUDA 
functions and data structures directly and allows full control 
of the corresponding code. We can conclude here that the 
price to pay for faster program execution is extended 
CUDA/CULA program development time in comparison to 
using MATLAB’s Parallel Computing Toolbox.   

Further, when we compare the CUDA/CULA 
implementation with the considered CPU implementations, 
we can observe that it is, on average, 11.82×, 6.15×, and 
4.34× faster than the Eigen, MATLAB, and Intel MKL, 
respectively.  

VI.  CONCLUSIONS 

In this paper, we presented a comparison of time efficiency 
of computing the LU decomposition using three different 
implementations for CPUs and two for GPUs. The 
experiments performed on matrices with randomly-generated 
single-precision floating-point numbers showed that the 
CUDA/CULA GPU implementation offers shortest 
computation times, but only for matrices which can be stored 
in the GPU global memory (N ≤ 8192 on our test platform). 
The LU decomposition on larger matrices could be performed 
only on the available multicore CPU, where Intel’s MKL is 
the fastest implementation due to multithreaded execution 
optimized for Intel processors.  

We can conclude that, when processing time is a critical 
parameter, the LU decomposition should be performed on the 
GPU using highly-optimized linear algebra libraries like 
CULA, whenever matrices can be stored in the GPU’s 
memory. In other cases, Intel’s MKL is the best out of the 
considered solutions for performing the LU decomposition on 
multicore CPUs.    
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