

Multi-threaded user and kernel-space library
Hristo Valchanov1 and Simeon Andreev2

Abstract – Developing of technology and the large range of
possibilities offered by modern hardware allows the use of
specialized high-performance approaches for the implementation
of various software systems and algorithms. One of the most used
and effective approach is the creation of multi-threaded software
running in parallel on multiple processors. This paper presents
the features of the implementation of multi-threaded library
under Linux, which allows running both in user and kernel-
space mode.

Keywords – Multi-threaded library, Threads, User-space,
Kernel-space.

I. INTRODUCTION

Development of technology and the large range of
possibilities offered by modern hardware components allow
the use of specialized high-performance approaches in the
implementation of various software systems and algorithms.
One of the most used and effective such approach is the
creation of multi-threaded software running in parallel on
multiple processors [7]. The actuality of this type of tasks and
the need for new and improved modern applications argues
mainly with the introduction of application oriented
processors containing multiple independent cores (currently 6-
8), which can operate independently of each other [2].

Every modern operating system supports multiprocessor
operations. Important requirement for modern operating
systems is the effective use of available hardware resources
and provision them in the most appropriate way to user
programs [1].

A current trend is using of multi-threaded libraries as an
essential part of the most used and effective programming
languages such as C ++, Java and others. The existence of
different specific architectures makes this task difficult and
sometimes even impossible for effective implementation. So
there are many different standard libraries optimized for a
particular architecture and operating system [5].

The paper presents the specifics of the implementation of
multi-threaded library under Linux, which allows for
operation both in user (user-space) and system (kernel-space)
mode.

II. MOTIVATION

There are currently multiple implementations of multi-
threaded libraries for different purposes. The GNU Portable
Threads (Pth) [3] is a library created with the idea of a
portable interface to a wide range of UNIX systems. The

library Next Generation POSIX Threading (NGPT) [4] is
developed by IBM for compatibility with POSIX standard for
Symmetric Multi-Processing (SMP) machines. Linux Threads
[8] is an implementation of the POSIX IEEE 1003.1c standard
for Linux platforms. The library is based on the model one-to-
one and operates in user mode. The new implementation of
threads in Linux - Native Posix Thread Library (NPTL) [9] is
also compatible with the POSIX standard, but it is based on a
kernel-space model.

The implementations are optimized for machines with
different architectures - uniprocessor, multiprocessor with
shared memory, multiprocessor with distributed memory [6].
The modern processors are multi-core, which results in
increased productivity. However, one should also take into
account the fact that not every class of algorithms is subject to
parallelism. There are algorithms for which has not yet found
an effective multi-threaded implementation, or even inability
to establish such one. On the other hand, there are many tasks
for which the improvement in the speed of execution is great
and justifies the additional difficulties that occur in
multiprocessor operation. The software developer should have
a choice of different functionality of multi-threaded libraries
depending on the specifics of the various tasks to solve.

The presented library provides such flexibility. For this
purpose a maximum identical user interface in both modes has
been developed.

III. IMPLEMENTATION IN USER-SPACE MODE

A. Threads switching

The way of organizing threads switching by the dispatcher
is essential for the effectiveness of multi-threaded library.

A possible approach for taking the processor from a user
thread and providing it to the dispatcher is using an interrupt.
In Linux the signals are convenient system for the realization
of such user software interruptions. An interruption can be
taken, for example, by a timer set to a specified interval.
There are several problems making such a decision not very
desirable. First, a very big advantage of the design of the
entirely library in user-space, is the ability to fast switching
between threads. The continuous use of signals and timers,
however, requires switching to the kernel, which slows down
repeatedly this usually fast operation. Second, storing of the
user context that was interrupted by the timer is a difficult
task. This is because when an interrupt function is executed,
for some library functions it is not guaranteed to function
properly.

Another possible approach is the dispatcher to work in a
separate thread visible to the operating system, but this leads
to other difficulties in implementation without providing the
necessary effectiveness.

These are the main reasons why is using a non-preemptive
dispatching in the proposed implementation of the user-space

1Hristo Valchanov is with the Department of Computer Science at
Technical University of Varna, 1 Studentska Str., Varna 9010,
Bulgaria, E-mail: hristo@tu-varna.bg.

2Simeon Andreev is with the Department of Computer Science at
Technical University of Varna, 1 Studentska Str., Varna 9010,
Bulgaria, E-mail: simeon.andreev90@gmail.com.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

208

library. This solution also provides an opportunity to clearly
show the main advantages and disadvantages of threads
creating entirely in user-space mode.

B. Threads states in user-space mode

Each thread is represented by a special structure (Thread
Control Block - TCB), containing the necessary information
for its management. This information is used by the dispatcher
for scheduling and context switching. The dispatcher takes
care of the management of the events, which is very important
for proper operation of the library. The dispatcher is called
whenever a thread gives the CPU to another thread or when it
locks automatically to an event. Figure 1 shows the states that
a thread can take during its existence.

Each of the states except Running, is represented with a

priority queue of TCB of the threads which are in this state. A
new created thread first is in the New state. From there, at the
earliest opportunity the dispatcher can move it into the Ready
state. On every dispatching, from the Ready queue is selected
the most priority task which becomes Running. From the
Running state a thread can go into any of the following states:
Dead - if it finishes its execution, Waiting - if it is blocked to
an event or into the Ready state otherwise. On every
dispatching the threads in the Waiting queue are checked and
moved to the Ready state if the appropriated events occur. In
the Suspended state each thread can go if it is need not to be
executed for a given period of time.

The non-blocking read/write operations, the thread sleeping
for a specified time and the operations with synchronization
primitives are entirely based on the event system.

IV. IMPLEMENTATION IN KERNEL-SPACE MODE

A. Threads states in kernel-space mode

The basic idea of this approach is to use the resources
available to the operating system level for tasks dispatching.
This allows for much better planning and using of resources
of the entire system, but the disadvantage is that there is a
slow switching between threads because of the need for
system calls. The implementation of the threads in this mode
is based on system call clone(). For the Linux kernel a thread

is stored in the same structure, which is used for a separate
process. Although that the basic information is stored in the
structures of the operating system, it is still necessary to
maintain data for the thread in the user context too. Such
information, for example, is for the starting function and its
argument. Maintaining this duplicated information allows a
simpler implementation of some library functions.

Figure 2 shows a graph of the threads states in this mode.

The thread states are following:
• Running - The thread is either in the queue for starting or

its execution is in progress.
• Interruptible - The thread is temporarily suspended while

is awaiting the fulfillment of some condition. It wakes up
on the event occurrence or on receipt of a signal.

• Uninterruptible – The state is identical with the
preceding, the only difference is that the signals have no
effect on the thread.

• Traced - When a thread is traced in the system
(debugging mode).

• Stopped - When the execution of the thread is terminated.
This state is achieved upon receipt of certain signals.

B. Threads synchronization in kernel-space

In the current library implementation are developed two
types of synchronization primitives - spinlocks and mutexes.
The spinlocks provide synchronization based on active
waiting. Although this approach is not particularly effective,
implementation is extremely simplified.

The second type primitives are based on waiting to release
the processor. They are more complicated to implement
because they require the use of system calls to the kernel. This
is necessary for the dispatcher to suspend the execution of the
current thread and to choose another thread to continue its
work. In the proposed library the mutexes are implemented in
the most effective way through a mixed approach. Initially, an
attempt to short active waiting is made. If after that the mutex
is still busy, the kernel blocks the thread execution. For this
purpose is used a special tool for basic access locking - Fast
User-Space Mutex (futex) [10].

In general, for the proper operation of a futex it is need to
allocate a system semaphore. In the current implementation
are used special (private) version of futex, which are local to
the process, thus saves checking the semaphore internally in
the kernel. This implies that the implementation is faster than
that provided by the NPTL library where mutexes have a
much more complex structure, slowing their use.

Fig.1. Threads states in user-space mode

Fig.2. Threads states in kernel-space mode

Ready Running

Stopped New

Interruptible /
Uninterruptible

Traced

New

Ready

Running Waiting

Suspended Dead

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

209

V. APPLICATION PROGRAMMING INTERFACE

The library provides an application programming interface
that is maximum identical in both modes. The interface
includes several groups of data types and library functions
with different purpose such as:

• Types of data to work with system structures;
• Functions for initialization and completion of the work

with the library;
• Functions for creating and destroying threads;
• Synchronization functions;
• Function for blocking and waiting;
• Functions for access to information for a separate

thread.

VI. EXPERIMENTAL STUDY AND RESULTS

The testing of multi-threaded library was made with regard
to the two basic types of system load:

• CPU bounded processes. These are processes that
perform many and long time calculations.

• I/O bounded processes. These are processes that perform
intensive system calls to the operating system. For
example, saving in the files, waiting for an input from
the user, using network communications.

The fastest execution for CPU bounded processes is
expected to be achieved when the dispatcher uses a maximum
possible period between switching of two threads. This allows
saving of information and maximum use of processor caches.
These processes almost always work without interruption,
using all their time determined by the dispatcher. An optimal
policy for them is to be allowed to work a long time, whereas
it is not necessary their frequent starting.

On the other hand, the I/O bounded processes do not
require long periods to use the CPU. This is because they
rarely utilize it fully and often block alone. An optimal policy
for them is the dispatcher to run them as much as possible
more often for work.

Comparisons are made with the most common
multithreading library pthreads and in particular with its most
recent implementation in Linux - NPTL.

The experimental platform is based on Intel i7 2600K,
running at 4.0GHz clock speed. The processor uses "HT"
technology and can execute 8 threads simultaneously. Each
core has its own cache memory: L1 - 64KB, L2 - 256KB and
shared L3 cache size 8MB. The memory is DDR3 SDRAM -
8GB, 1600MHz, dual channel mode. The operating system is
64-bit Arch Linux distribution with kernel version 3.8 and the
compiler - gcc 4.8.1 and glibc 2.17.

The first test involves matrix multiplication, as an example
of a task comprising multiple calculations. There are created 5
separate threads, each of them multiplies 20 times a square
matrices of size 100x100 elements. Figure 3 shows the
obtained results.

As we expect, the pthreads and kernel-space
implementations cope best with the test. The results are close,
but the advantage is for pthreads library. From this test is
shown the great disadvantage of user-space libraries - they can

work on only one processor. The remaining two libraries take
advantage of the available 8 cores. The test excludes blocking
of threads.

The second test uses handling of input/output operations.
There are created 2 threads, one reads from a file, and the
other saves data in it. The pairs read/write operations are
performed 1000000 times. It is expected that during the
execution of some of the operations blocks could occur.
Figure 4 shows the obtained results.

The user-space library is used in two ways. With "1" is

noted the use of non-blocking primitives provided by the
current implementation, and with "2" - when they are replaced
with standard write() and read(). As can be seen, the
developed tools have better efficiency in comparison with the
standard ones in Linux.

The pthreads and kernel-space libraries show the same
performance with a slight preponderance of the kernel-space
implementation.

The test results show also a greater fluctuation between
different starts because it is more difficult to predict variants
of execution.

The third test aims to assess the effectiveness of
synchronization primitives. In the cycle of 1000000 iterations
a mutex is locked and unlocked. There are created 5 separate
threads, each of which performs the described action. Figure 5
shows the obtained results.

It is evident that the implementation of mutex in pthreads
library is slower and requires an average 615154µs.

Fig.3. Results for matrix multiplication

Fig.4. Results for I/O operations

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

210

The version in the kernel-space library is about 1.5 times
faster, thanks to a simple and effective structure of
organization of the threads. Also the advantage is due to the
fact that an active waiting is used instead immediately
suspending of the execution of the thread.

Quite expectedly the user-space implementation is proved

fastest with an average of 82875µs. This is due to the fact that
slow system calls are not used.

VII. CONCLUSIONS

This paper presents an implementation of a multithreaded
library under Linux, functioning both in user-space and
kernel-space mode. Some features of implementation are
given. Experimental comparisons and evaluations with the
famous library pthreads have been made.

The results show that for presented library it is achieved
identically and in specific cases high performance. The
developed library is relatively small, which results in faster
compilation. The code is written in a simple way, which
allows the use of the library for learning multithreaded
programming.

Goal of future work is to improve the signal processing in
user-space mode, as well as developing additional
synchronization primitives, such as conditional variables and
monitors.

REFERENCES

[1] Haldar S., A. Aravind. Operating Systems. Dorling Kindersley
Ltd. 2010.

[2] Herlihy M, N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008.

[3] Engelschall R. Portable Multithreading. The signal stack trick
for user-space thread creation. In Proceedings of 2000 USENIX
Annual Technical Conference, 2000, pp.18-23.

[4] IBM Corporation. Next Generation POSIX Threading,
November 2002.

[5] Ljumovic M. C++ Multithreading Cookbook. Packt Publishing,
2014.

[6] Love R. Linux System Programming. O’Reilly. 2013.
[7] Sandem B. Design of multithreaded software. Wiley Inc. 2010.
[8] Leroy X. The Linux Threads Library.

http://pauillac.inria.fr/~xleroy/.
[9] Native Posix Thread Library. http://people.redhat.com/

drepper/nptl-design.pdf.
[10] Futex Semantics and Usage. http://man7.org/linux/man-

pages/man7/ futex.7.html.

Fig.5. Results for synchronizing primitives

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

211

