

66%

17%

3%
4% 3% 7%

Images

JavaScript

CSS

Flash

HTML

other

90%

10%

Static content

Dynamic content

Programming approaches for implementing web servers

for static content
Hristo Nenov

1
 and Sevdalin Todorov

2

Abstract – The paper describes the role of the web servers for

static content, and what part of the overall concept of the

internet they occupy. Different models and algorithms for

implementation of servers are described, and their strengths and

weaknesses are pointed.

Keywords – Servers for Static Content, Approach, Model,

Thread, Process, I/O Operation.

I. INTRODUCTION

Popularity of Internet and widespread usage of Web

requires timely improvement of the technologies and software

used for Internet communications and servers. The Increasing

number of users of WWW, as well as its penetration in more

areas makes web servers critical component in this area. The

enormous number of users whose requests must be processed

increases the requirements for hardware and communication

resources, which in turn increases operational costs. With the

dynamic development of the network consumers are

becoming more demanding of the server response time when

processing their requests. Most of the resources that web

servers serve are static – images, CSS, client-side JavaScript,

audio, video etc.. There are few popular web servers with

general purpose as well as many not so common. The main

goals of most of them are flexibility, lots of functionality and

cross-platform, thus the performance and system resources

usage remain in the background.

II. WEB SERVER IMPLEMENTATION APPROACHES

A. WEB PAGE CONTENT

The information in the World Wide Web is contained in

hypertext documents or information resources, known as

web pages. Usually the web page format is HTML or

XHTML and allows navigating to other web pages using

hyperlinks. Web pages may include other resources like

multimedia, CSS and JavaScript. Content that does need

extra processing prior serving it to the user is referred to as

static content, if the content needs processing it is referred

to as dynamic content. Web servers use HTTP protocol to

transmit the content. Often the Web server is used to

provide information in other formats - most often these are

images in the formats PNG, JPEG and GIF; XML

documents, CSS and JavaScript files, etc.. so-called static

content.

Fig.1 Average bytes per page for different type of context

Usually the Web server uses external programs to process

the information before it is sent to the user using CGI scripts

or application servers, however the processing module can be

built-in into the server code. These scripts can be written in

one of many programming languages, but the most commonly

used languages are Java, PHP, Python, Ruby and Perl.

Fig.2 Average bytes per page for different type of content

B. LOADING SPEED

In September 2009 - Akamai Technologies, Inc. published

a key study conducted by Forrester Consulting, which

examines eCommerce web site performance and its

correlation with an online shopper’s behavior. The most

compelling results reveal that two seconds is the new

threshold in terms of an average online shopper’s expectation

for a web page to load and 40 percent of shoppers will wait no

more than three seconds before abandoning a retail or travel

1Hristo Nenov assist. prof. at Faculty of Automation and Computing

at Technical University Varna, 1 Studentska str.Varna 9000, Bulgaria,

E-mail: h.nenov@tu-varna.bg
2Sevdalin Todorov graduated bachelor engineer at Faculty of

Automation and Computing at Technical University Varna, 1

Studentska str.Varna 9000, Bulgaria,

E-mail: dincho.todorov@gmail.com

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

216

site. Additional findings indicate that quick page loading is a

key factor in a consumer’s loyalty to an eCommerce site,

especially for high spenders. 79 percent of online shoppers

who experience a dissatisfying visit are less likely to buy from

the same site again while 27 percent are less likely to buy

from the same site’s physical store, suggesting that the impact

of a bad online experience will reach beyond the web and can

result in lost store sales. In a similar study conducted in 2006,

Akamai found customer expectations at four seconds or less.

Considering both studies and the period of three years

between them, it may be concluded that user expectations of

web pages loading time were doubled. Given that, and the

rapidly increasing mobile users and their significant

requirements, because of the constraints of their environment

(end of 2014) it can be concluded that expected loading time

of web pages is less than one second. After internal research

conducted in 2009 by Google, they also found that the loading

times of web pages is of great matter, the greater is the delay -

the less users use the service. On the one hand, from technical

point of view many Internet publications argue that reducing

the load time of pages dramatically reduces the load of the

service equipment and therefore reduces operating costs by up

to 50%. This is expected since theoretically faster request

processing leads to faster resources freeing and available for

use by other requests and programs, thereby increasing the

ratio of efficiency of the equipment.

Fig.3 Web Server Survey

C. APACHE SERVER APPROACH

Apache is among the most widely used web servers.

According to NetCraft -- which provides Internet research

services -- Apache web servers dispatch over 50% of the

overall content -- static and dynamic -- on the web.

The Apache software foundation produces two types of

web servers. Apache HTTP used for static content that can

also be equipped with modules to serve dynamic content (e.g.

PHP, Ruby), as well as Apache Tomcat which is a web-

container (i.e. application server) used for serving dynamic

content written in Java. The modules add additional

functionality such as CGI, SSL, virtual hosts and processing

of applications written in almost any programming language.

Modules can be loaded dynamically without the need for

recompilation of the web server.

The main modules through which Apache processes client

requests are called modules for multi-processing. These

modules are responsible for client requests processing and

their distribution to the worker threads. These modules

interact directly with the operating system by system calls.

Multiprocess module

This module creates a lot of child processes, but with one

thread per each. Therefore, a process can handle only one

request at a time. It is obvious that this architecture is not

scalable. The module is mainly used for compatibility with

older modules that are not thread safety.

Multiprocess-multithreaded module

This module creates a lot of child processes, and many

threads for each of them. Therefore, each process can serve

multiple requests. This is the best option of both modules

because it is scalable, but resource consumption increases

dramatically with increasing of concurrent requests.

Advantages and disadvantages

The advantages of Apache web server are its modular

architecture and dynamic loading of its modules. Because

Apache is developed and used so for many years, there are a

lot build modules for it. Another advantage is its cross-

platform characteristics.

The outdated and scale-dependent architecture that uses

multiprocess-multithreaded processing of requests can be

pointed as a major disadvantage. The support of large number

of operating systems can also be specified as disadvantage

because such a realization needs a lot additional source to

achieve platform independence.

D. NGINX SERVER APPROACH

Nginx is a web server, developed by Igor Sasoev. Initially

used for sites with high traffic in his home country – Russia,

Nginx has developed since then and is now one of the fourth

most used web servers in the world according to Netcraft.

Besides being able to handle static content, Nginx modules

also support FastCGI - allowing processing and dynamically

generated content. Nginx functionality is based on modules

like Apache, however, unlike the Apache modules which can

be built into the web server or loaded dynamically, Nginx

modules can be added only at compile time. Nginx is designed

with asynchronous event-driven architecture so you can use

only one thread to processing many requests in concurrent. At

high load, this architecture uses less and predictable amount

of RAM- to process each request, compared to Apache model

which uses “Multiprocess-multithreaded” oriented approach -

depending on the selected module. Therefore Apache creates a

new thread to handle new request - which requires additional

memory. Nginx can handle new requests using existing

threads, because of its architecture. Nginx also is cross-

platform and supports many different operating systems.

Advantages and disadvantages

The biggest advantage of this web server is its architecture -

asynchronous event-driven. A disadvantage is also the

relatively high amount of source code needed to build: the

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

217

modular architecture, work with dynamic content and

numerous of extra functionalities.

E.UNIX BASED OPERATING SYSTEMS

UNIX based systems are dominant in the sector of web

services. According W3Techs their share was 67.5% percent

as of May 2014. Normally, the kernel and the application

layers of these operating systems are open source, which

contributes to their popularity, security and stability. Also,

most of these systems are free, which is an essential factor in

the choice of operating system, for such applications. UNIX

operating systems are proven in the years of operation,

superior performance and efficiency in the use of system

resources. The most common of these is Linux, which is the

reason that was chosen as a platform for research in this

paper.

Linux asynchronous input/output (I/O) model

Linux asynchronous I/O is a relatively recent addition to the

Linux kernel. It's a standard feature of the 2.6 kernel. The

basic idea behind AIO is to allow a process to initiate a

number of I/O operations without having to block or wait for

any to complete. At some later time, or after being notified of

I/O completion, the process can retrieve the results of the I/O.

Fig.4 Simplified matrix of basic Linux I/O models

Synchronous Blocking I/O

 One of the most common models is the synchronous

blocking I/O model. In this model, the user-space application

performs a system call that results in the application blocking.

This means that the application blocks until the system call is

complete (data transferred or error). The calling application is

in a state where it consumes no CPU and simply awaits the

response, so it is efficient from a processing perspective.

Figure 5 illustrates the traditional I/O blocking model,

which is also the most common model used in applications

today. Its behavior are well understood, and its usage is

efficient for typical applications. When the read system call is

invoked, the application blocks and the context switch to the

kernel. The read is then initiated, and when the response

returns (from the device from which you're reading), the data

is moved to the user-space buffer. Then the application is

unblocked (and the read call returns).

From the application's perspective, the read call spans a

long duration. But, in fact, the application is actually blocked

while the read is multiplexed with other work in the kernel.

Fig.5 Typical flow of the synchronous blocking I/O model

Synchronous non-blocking I/O

 A less efficient variant of synchronous blocking is

synchronous non-blocking I/O. In this model, a device is

opened as non-blocking. This means that instead of

completing an I/O immediately, a read may return an error

code indicating that the command could not be immediately

satisfied (EAGAIN or EWOULDBLOCK), as shown in

Figure 6.

Fig.6 Typical flow of the synchronous non-blocking I/O model

The implication of non-blocking is that an I/O command

may not be satisfied immediately, requiring the application to

make numerous calls to await completion. This can be

extremely inefficient because in many cases the application

must busy-wait until the data is available or attempts to do

other work while the command is performed in the kernel. As

also shown in Figure 6, this method can introduce latency in

the I/O because any gap between the data becoming available

in the kernel and the user calling read to return it can reduce

the overall data throughput.

Asynchronous blocking I/O

 Another blocking paradigm is non-blocking I/O with

blocking notifications. In this model, non-blocking I/O is

configured, and then the blocking select system call is used to

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

218

determine when there's any activity for an I/O descriptor.

What makes the selected call interesting is that it can be used

to provide notification for not just one descriptor, but many.

For each descriptor you can request notification of the

descriptor's ability to write data, availability of read data, and

also whether an error has occurred.

Fig7.Tipical flow of the asynchronous blocking I/O model (select)

The primary issue with the select call is that it's not very

efficient. While it is a convenient model for asynchronous

notification, its use for high-performance I/O is not advised.

Asynchronous non-blocking I/O (AIO)

Finally, the asynchronous non-blocking I/O model is one of

the overlapping processing with I/O. The read request returns

immediately, indicating that the read was successfully

initiated. The application can then perform other processing

while the background read operation completes. When the

read response arrives, a signal or a thread-based callback can

be generated to complete the I/O transaction.

Fig.8 Typical flow of the asynchronous non-blocking I/O model

The ability to overlap computation and I/O processing in a

single process for potentially multiple I/O requests exploits

the gap between processing speed and I/O speed. While one or

more slow I/O requests are pending, the CPU can perform

other tasks or, more commonly, operate on already completed

I/Os while other I/Os are initiated.

III. CONCLUSION

In this article an overview of different programming

approaches and principles for creating web server for static

content is shown. From the presented facts can be made the

following conclusions:

 the bottle neck in job of the web servers for static

content is the performance of input output

operations;

 choice of the proper architecture according to the

specific role of the server significantly increases

productivity and efficiency.

 Future point in the study will be a real implementation of a

web server by choosing some of the architectures described

above.

REFERENCES

[1]. S. Todorov, “Design and Implementation of web server

for static content”, diploma thesis 2014.

[2]. Л. Николов,. UNIX: Системно програмиране. -

София: Сиела, 2009.

[3]. Л. Николов,. Операционни системи. - София: Сиела,

2012.

[4]. П. Наков, П. Добриков, Програмиране =

[5]. ++Алгоритми. - София: TopTeam Co, 2012.

[6]. Asynchronous I/O. Wikimedia,

 <http://en.wikipedia.org/wiki/Asynchronous_I/O>

(15.09.2014)

[7]. eCommerce Web Site Performance Today. Akamai

Technologies, Inc.,

<http://www.akamai.com/html/about/press/releases/200

9/press_091409.html> (15.09.2014)

[8]. D. Rubio, “Web application performance and

scalability.”

<http://www.webforefront.com/performance/webservers

_statictier.html> (15.09.2014)

[9]. J. Brutlag, “Speed Matters for Google Web Search.”

Google, Inc., 22.06.2009,

<http://googleresearch.blogspot.com/2009/06/speed-

matters.html> (15.09.2014)

[10]. “Usage of operating systems for websites. W3Techs“

<http://w3techs.com/technologies/overview/operating_s

ystem/all> (15.09.2014)

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

219

