

Processing of new connections

Request reading

Request dispatching

Request handling

Sending of Response

Asynchronous non-blocking IO model approach to avoid

the problem C10K in web servers for static content
Hristo Nenov

1
 and Sevdalin Todorov

2

Abstract – The paper describes one of the main problems in

processing of the web servers – C10K. A proposal for

implementation of the server for static content is made and test

benchmark and comparison results with chosen etalon are

shown.

Keywords – static content, asynchronous non-blocking IO,

event, event handler, pool, queue, thread, C10K.

I. INTRODUCTION

The primary function of a web server is to store, process

and deliver web pages to clients. The communication between

client and server takes place using the Hypertext Transfer

Protocol (HTTP). Delivered pages are most frequently HTML

documents which may include images, style sheets and scripts

in addition to text content. A web server has defined load

limits, because it can handle only a limited number of

concurrent client connections (usually between 2 and 80,000,

by default between 500 and 1,000) per IP address (and TCP

port) and it can serve only a certain maximum number of

requests per second depending on:

 its own settings;

 the HTTP request type;

 whether the content is static or dynamic;

 whether the content is cached;

 hardware and software limitations of the OS of the

computer on which the web server runs.

When a web server is near to or over its limit, it becomes

unresponsive.

II. C10K PROBLEM IN SERVER JOB

The name C10k is a numeronym for concurrently handling

ten thousand connections. The C10K Problem refers to the

inability of a server to scale beyond 10,000 connections or

clients due to resource exhaustion. Servers that employ the

thread-per-client model, for example, can be confounded

when pooled threads spend too much time waiting for

blocking operations-usually I/O. The native thread

implementations on most OSes allocate about 1 MB of

memory per thread for stack. As a result, blocking operations

easily frustrate scalability by exhausting the server's memory

with excessive allocations and by exhausting the server's CPU

with excessive context-switching. For that reason the blocking

operations should be avoided at all cost from servers that are

likely to be challenged by the large number of customers at

peak load.

The C10k problem is the problem of optimizing network

sockets to handle a large number of clients at the same time.

The problem of socket server optimization has been studied

because a number of factors must be considered to allow a

web server to support many clients. This can involve a

combination of operating system constraints and web server

software limitations. According to the scope of services to be

made available and the capabilities of the operating system as

well as hardware considerations such as multi-processing

capabilities, a multi-threading model or a single threading

model can be preferred. Concurrently with this aspect, which

involves considerations regarding memory management

(usually operating system related), strategies implied relate to

the very diverse aspects of the I/O management.

III. DESIGN AND IMPLEMENTATION OF WEB

SERVER FOR STATIC CONTENT (STATIX V.0.1.0)

For the implementation of the experimental server is

chosen “Asynchronous non-blocking I/O” model. HTTP

server listens for new connections from clients. During the

accepting process of a new connection, the server reads the

contents of the application submitted on the link and then

makes its analysis according to the HTTP protocol. The

resulting structure of the application is processed and

according to it an

appropriate response is

generated. The response

may be the require

content or mistake.

Finally the formatted

response is sent to the

appropriate client link

and the connection is

closed if it is not checked

“keep-alive” options,

otherwise the connection

does not close, only

resets the counters and

buffers to it.
Fig.1 Generalized Work Scheme

Acceptation of new connections is processed only from

one main thread. Once the connection is accepted a working

1Hristo Nenov assist. prof. at Faculty of Automation

and Computing at Technical University Varna, 1 Studentska str.

Varna 9000, Bulgaria, E-mail: h.nenov@tu-varna.bg
2Sevdalin Todorov graduated bachelor engineer at Faculty

of Automation and Computing at Technical University Varna,

1 Studentska str.Varna 9000, Bulgaria,

E-mail: dincho.todorov@gmail.comBulgaria.

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

220

thread is selected and read request in its event queue is

registered. As addition, deletion, modification and retrieval of

events are done through system calls (according to event-

notification system) and those system calls are serialized i.e.

they are thread safe and additional synchronization is not

necessary. Each working thread has its own event queue.

Fig.2 Generalized Work Architecture

A. Handling of new connections

Fig.5 Processing of new connection

Upon the occurrence of new connection event, all

pending connections are administering simultaneously as

during the time in which the event is generated and the time in

which it is processing new connections requests can be

received. Once the connection is accepted, it is set

appropriately, the event is recorded in the journal and event

request for queue reading is registered in one of the working

threads event queue. The thread chooses simple round

principle, thus achieving balancing distribution of working

load between threads.

B. Reading of request

Upon receipt of the event for reading the first thing is

to be determined whether the connection is still active, if it is

not then it closes itself. In the first event for reading to a

certain connection is verified the capacity of working thread

in which the processing is executed, and if it is reached then

the connection closes itself, otherwise the application is

initialized. The data reading from connection can be executed

repeatedly until all data is read or an error occurs. The error

may be due to too much data that cannot fit in the buffer

request, a transmission error if the client closed the connection

or if the result from the operation will be a process of

blocking. By error of blocking process, a new request event

for reading is registered and the processing ends. If the client

closes the connection, the server processing ends. At large

volume of data or other error in the response the respective

code answer is included. Control is passed to the next stage -

parsing and processing application.

Fig.6 Request processing

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

221

CPU % CPU % Memory

(usage) (kernel) (MB)

1000 24464 24880 24967 51 264 40,83

2000 48378 49051 49317 41 258 41,11

3000 70766 70960 71334 61 236 48,45

4000 86460 90592 92163 52 248 53,57

5000 90668 102468 108517 52 245 62,62

6000 94759 114013 120446 47 270 62,78

7000 88030 115415 128845 50 251 68,53

8000 86079 127605 135004 34 277 68,63

9000 71328 107752 138751 57 262 68,73

10000 72418 114732 141538 54 265 68,75

Connections Min Average Маx

CPU % CPU % Memory

(usage) (kernel) (MB)

1000 23642 23786 23932 155 170 47,49

2000 22204 30646 36092 129 146 49,69

3000 28981 38987 66015 134 199 49,91

4000 27260 32057 40562 131 146 50,41

5000 13682 31937 51481 137 164 50,04

6000 14126 35815 65161 71 115 50,28

7000 13990 29367 32551 92 140 50,53

8000 13629 25508 32106 158 185 50,36

9000 13586 23564 31398 173 215 51,79

10000 13507 25480 31678 135 208 51,47

Connections Min Average Маx

C. Request handling

The Request handling consists in few steps:

 processing of the file request;

 determination of the appropriate header for

different content type;

 generating of response.

In the time of file processing its absolute path on the

file system server is generated. The check is if there is such a

file and is it available for reading. For a high level of

performance the cache of the open files is used. At successful

open of the file, the respective status of the response and its

size are set.

The content type of the response is determined by a

static table based on the extension of the request. The

construction of the response based on the formation of the

text, depending on the status, type, size, and the subsequent

closing of connection. If there is not an available opened file,

the body of the response is formed by static table based on the

status of the response. Once the request is processed, the

response is send to the client.

IV. RESULTS

Tests were performed on a clean server especially

designed for these tests. There are no unnecessary services

installed and used otherwise. For comparatively analysis is

used web server Nginx. Tool for the benchmark is Weighttp

with Weighttp wrapper.

Technical part:

 HP ProLiant DL380p Gen8

 2 x Intel(R) Xeon(R) CPU E5-2650 @

2.00GHz

 cores: 16

 threads: 32

 RAM: 64GB DDR3 1600 MHz

Software environment:

 Ubuntu 14.04.1 LTS (64bit)

 Kernel: Linux ubuntu 3.13.0-35-generic

 Statix 0.1.0 (our project)

 Nginx 1.4.6 (etalon for benchmark)

 Weighttp 0.3

 Weighttp wrapper 5.10.7

TABLE I
STATIX V.0.1.0 RESULTS

FIG.7 PROCESSING PERFORMANCE OF STATIX V0.1.0

TABLE II

NGINX 1.4.6 RESULTS

Fig.8 processing performance of Nginx 1.4.6

Fig.9 Resource consumption of Statix 0.1.0

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

222

Fig.10 Resource consumption of Nginx 1.4.6

Fig.11 Comparison on request processing

Statix 0.1.0 - Nginx 1.4.6

Fig.10 Comparison on resource usage

Statix 0.1.0 - Nginx 1.4.6

V. CONCLUSION

From the experiments made (shown in the preceding tables and

graphs) the following can be concluded:

 at increasing of the number of client connections almost linearly

increases the number of concurrent connections that are

processed. At the target 10k connections, the server is doing

extremely well. Moreover it reaches performance nearly five

times better than the comparator etalon.

 the results are not at the expense of using a huge amount of

resources – CPU, memory and etc.. Consumption of resources is

in very good range. A good impression makes their stable

behavior.

High productivity, efficient operation and predictability resource

consumption are the results of the choice of scalable architecture for

building Web server - “Asynchronous non-blocking I/O” model.

Experiments clearly show that this type of architecture is

especially suitable for high load web servers.

REFERENCES

[1] S. Todorov,. Design and Implementation of web server for static

content, diploma thesis 2014.

[2] D. Rubio,. Web application performance and scalability.

<http://www.webforefront.com/performance/webservers_

statictier.html> (15.09.2014)

[3] “Asynchronous I/O.” Wikimedia, 11.09.2014,

<http://en.wikipedia.org/wiki/Asynchronous_I/O> (15.09.2014)

[4] T. Jones, “Boost application performance using asynchronous

I/O. Emulex, 29.08.2006

[5] “Usage of operating systems for websites.” W3Techs,

15.09.2014,

<http://w3techs.com/technologies/overview/operating_system/

all> (15.09.2014)

 L INT. SC. CONF. ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES, 24-26 JUNE, SOFIA, BULGARIA

223

